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MULTIVARIATE DISCRETE PHASE-TYPE DISTRIBUTIONS

Abstract

by Matthew Goff, Ph.D.

Washington State University

May 2005

Chair: Haijun Li

Many stochastic models involve in one way or another probability distributions of phase-type. The family

of univariate phase type distributions was introduced by Neuts in [14] as a tool for unifying a variety of

stochastic models and for constructing new models that would yield to algorithmic analysis. A class of

multivariate phase-type (MPH) distributions was developed by Assaf et al. ([2]). Following Assaf et al., we

develop a class of multivariate discrete phase-type (MDPH) distributions.

We demonstrate that MDPH distributions satisfy a number of closure properties and show how they are

linked closely with MPH distributions. We develop a number of conditions related to dependency structures

of MDPH distributions and show how the link between MPH and MDPH distributions provides a means of

analyzing the dependency structure of MPH distributions. A thorough analysis of simple bivariate MDPH

distributions is provided and we use the results to find necessary and sufficient conditions for negative

dependent bivariate MPH distributions. Two applications of MDPH distributions are given. In the first

application, periodic inspection of systems with component lifetimes having a MPH distribution naturally

leads to a MDPH distribution. In the final application we derive a simple formula for the mean time to

failure of coherent life systems with component lifetimes having an MDPH distribution.
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Chapter 1

Introduction

This dissertation presents a theory of multivariate discrete phase type (MDPH) distributions which consists

of the representation, structural properties, and some computational methods. Chapter 2 focuses on the

representation of MDPH distributions. Chapter 3 establishes useful closure and dependence properties.

Chapter 4 provides a complete analysis of bivariate discrete phase type distributions. Finally, Chapter 5

presents some algorithms for computation and applications of MDPH distributions. Code implementing

algorithms described and used in Chapter 5 is given in the Appendix. In this chapter we discuss the

motivation for this work and summarize the main results.

Many stochastic models involve in one way or another probability distributions of phase-type. The family

of univariate phase type distributions was introduced by Neuts in [14] as a tool for unifying a variety of

stochastic models and for constructing new models that would yield to algorithmic analysis. A non-negative

random variable T (or its distribution function) is said to be of phase-type (PH) if T is the time until

absorption in a finite-state continuous-time Markov chain {X(t), t ≥ 0} with state space S and an absorbing

state ∆. That is, T has a PH distribution if

T = inf{t : X(t) = ∆}.

As an example, the Erlang distribution (the distribution of i.i.d. exponentially distributed random variables)

is of phase type. Univariate PH distributions (and their densities, Laplace transforms and all moments) can

be written in closed form in terms of the parameters of the underlying Markov chains. Furthermore the set

of univariate PH distributions is dense in the set of all distributions with support in [0,∞). The theory of

univariate PH distributions has been developed by several researchers and has been found to have various
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applications in queueing theory and reliability theory (see [14]), and in risk management and finance ([1],

[17]).

At least two classes of multivariate phase-type distributions have been introduced and studied in the

literature ([2], [9]). Following Assaf et al. in [2], consider a continuous-time and right-continuous Markov

chain X = {X(t), t ≥ 0} on a finite state space S with generator Q. Let Σi, i = 1, . . . ,m, be m nonempty

stochastically closed subsets of S such that ∩m
i=1Σi is a proper subset of E (A subset of the state space is

said to be stochastically closed if once the process X enters it, X never leaves). We assume that absorption

into ∩m
i=1Σi is certain. Since we are interested in the process only until it is absorbed into ∩m

i=1Σi, we may

assume, without loss of generality, that ∩m
i=1Σi consists of one state, which we shall denote by ∆. Let β be

an initial probability vector on S such that β(∆) = 0. Then we can write β = (α, 0). Define

Ti = inf{t ≥ 0 : X(t) ∈ Σi}, i = 1, . . . ,m. (1.1)

It is assumed that P (T1 > 0, T2 > 0, . . . , Tm > 0) = 1. The joint distribution of (T1, T2, . . . , Tm) is

called a multivariate phase-type (MPH) distribution with underlying Markov chain (α, Q, Ei, i = 1, . . . ,m),

and (T1, T2, . . . , Tm) is called a (multivariate) phase-type random vector. As in the univariate case, MPH

distributions (and their densities, Laplace transforms and moments) can be written in a closed form. The

set of m-dimensional MPH distributions is dense in the set of all distributions on [0,∞)m, and thus any non-

negative m-dimensional distribution can be approximated by the MPH distributions. Hence MPH provides

a powerful and versatile tool in the study of multivariate stochastic models. Kulkarni in [9] introduced a

more general class of multivariate PH distributions (MPH∗), based on the total accumulated reward until

absorption in a continuous-time Markov chain. However, we did not develop such a class of multivariate

discrete phase-type distributions.

An example of MPH distribution is the Marshall-Olkin distribution ([15]); one of the most widely dis-

cussed multivariate life distributions in reliability theory (see [3]). The multivariate Marshall-Olkin distri-

bution has also been used recently to model certain correlated queueing systems, such as assemble-to-order

systems (see [11]). Due to their complex structure, however, the applications of general MPH distributions

have been limited. Indeed, the structural properties of MPH distributions depend not only on the underlying

Markov chains, but also the interplay among the overlapping stochastically closed subsets Σi, i = 1, . . . ,m.

To the best of our knowledge, [10] is perhaps the only paper in the literature focusing on the positive de-

pendence properties of MPH distributions. Some properties, especially these concerning the dependence

structure, are still unknown.
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Another problem is with the computation of MPH distributions. As in the univariate case, MPH distribu-

tions have closed form solutions to many problems. However, the closed form solutions for stochastic models

with multivariate phase-type distributions are in general still computationally intensive. For example, how

does one approximate a multivariate non-negative distribution via some “simpler” MPH distribution? In the

univariate case, there have been extensive studies on these issues. In contrast, many computational problems

for MPH distributions are still open.

To facilitate the analysis of MPH distributions, we introduce a different approach. We define multivariate

discrete phase-type (MDPH) distributions and find that MPH distributions can be considered a composition

of MDPH and Erlang distributions. We decompose the underlying Markov chain that defines an MPH and

separate the underlying event process from state transitions. The nature of this separation suggests different

approaches to the analysis of MPH distributions and in the future may allow for the analysis of more general

models where the event process is not a Poisson process.

After defining MDPH distributions, we look at the underlying Markov chains and provide a canonical

form for the transition matrix. The structure of the canonical form allows for an easier exploration of the

properties of a MDPH distribution and its underlying Markov chain. We also obtain sufficient conditions

for simplifying an underlying Markov chains for a given MDPH distribution. Some closure properties are

straightforward to derive by construction of an appropriate underlying Markov chain. There are results

that show marginals, order statistics, and the concatenation of independent distributions are all MDPH

distributions if the original distributions were MDPH.

We consider some dependence properties of MDPH distributions with emphasis on bivariate MDPH dis-

tributions and show that the positive dependence properties of underlying MDPH distributions are inherited

by the overlying MPH distributions. Our result also illustrate differences between MPH and MDPH dis-

tributions. Unlike in the continuous case, the discrete Marshall-Olkin distribution may not be positively

dependent in some cases. Also unlike the continuous case, that the discrete Freund distribution cannot be

positively dependent. We establish a sufficient condition for the discrete Freund distribution to be negatively

dependent. This condition settles an open question for the Freund distributions. Li in [10] showed that if

the probability that a component i is destroyed in a Freund distribution becomes larger when the other

components fail first, the Freund distribution is positively dependent. Our results show that if the proba-

bility that a component i is destroyed becomes smaller when the other components fail first, the Freund

distribution is negatively dependent. Note that, unlike the case with positive dependence, the analysis of

negative dependence poses a considerable challenge because of lack of tools such as stochastic monotonicity.
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We present a means of directly computing MDPH probabilities over a class of regions. We also develop

an algorithm for generating random vectors from MDPH distributions. A straightforward addition to the

algorithm also allows for the generation of random vectors from MPH distributions. Implementations of the

algorithms in R [16], are provided in the Appendix along with the code used in various examples.

In addition to the motivation provided by the relationship of MDPH distributions with MPH distributions,

MDPH distributions are of interest in their own right. We illustrate the usefulness of MDPH distributions

through two applications from reliability modeling: periodic inspections of systems with MPH distributed

component lifetimes and coherent systems with dependent component lifetimes having a MDPH distribution.

Throughout this dissertation, the term ‘increasing’ and ‘decreasing’ mean ‘non-decreasing’ and ‘non-

increasing’ respectively, and the measurability of sets and functions as well as the existence of expectations

are often assumed without explicit mention. We also assume that all the states of a Markov chain are

reachable.
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Chapter 2

Multivariate Discrete Phase Type

Distribution and its Representation

In this chapter we introduce the multivariate discrete phase type (MDPH) distributions and related notations

for their representation. We study some basic properties in Section 2.2, and in Section 2.3 also discuss two

examples of MDPH distributions from reliability modeling.

A discrete phase type (DPH) random variable is defined as the number of transitions it takes for a

discrete-time Markov chain to enter an absorbing subset of the state space. As such, the properties and

dependence structure of a MDPH distribution depend on its underlying Markov chain and the absorbing

sets. Since the Markov chain underlying a MDPH distribution is not unique, we focus on the equivalence

and reducibility of these underlying Markov chains. We obtain a sufficient condition under which a Markov

chain representation can be reduced to one with simpler structure, and also show that a simple Markov chain

representation for an MDPH must be unique.

2.1 Definitions and Notation

Let {Sn, n ≥ 0} be a discrete-time Markov chain with a finite state space S. Let Σ = {Σ1, . . . ,Σm} be a set

of non-empty stochastically closed subsets such that Σ∆ = ∩m
k=1Σk 6= ∅. A subset of the state space is called

stochastically closed if when the Markov chain {Sn, n ≥ 0} enters that subset, it subsequently never leaves.

We also define Σ0 =
m
∩

i=1
Σc

i . We assume that absorption in Σ∆ is certain. Let S = [sij ] be the transition

matrix of the process. Hence, sij = 0 if i ∈ Σk and j ∈ Σc
k for some k. Also let σ be an initial probability
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vector on S with σ(Σ∆) = 0 then {Sn, n ≥ 0} will also be written as S = {S ,Σ,S, σ} in order to make

explicit the algebraic structures underlying the Markov chain.

Definition 1 (Multivariate Discrete Phase Type Distribution) Let

Sj = min{n | Sn ∈ Σj}, j = 1, . . . ,m.

Then the joint distribution of S = (S1, . . . ,Sm),

P{S1 ≤ n1, . . . ,Sm ≤ nm} = P{ min{n | Sn ∈ Σ1} ≤ n1, . . . ,min{n | Sn ∈ Σm} ≤ nm},

is called a multivariate discrete phase-type distribution (MDPH).

Theorem 1 (Calculating Survival Probabilities) For a vector of non-negative integers (n1, . . . , nm),

let o be a permutation of 1, 2, . . . ,m such that no1 ≤ no2 ≤ . . . ≤ nom
. Taking

Γi =
m
∩

j=i
Σc

oj
, i = 1, . . . ,m,

(note: Γ1 = Σ0) and, for S̄ ⊆ S, IS̄ = [Iij ] an |S | × |S | diagonal matrix where

Iii =

 0 if si 6∈ S̄

1 if si ∈ S̄,

then the joint survival function of an MDPH with the underlying Markov chain S = {S ,Σ,S, σ} is given by

P{S1 > n1, . . . ,Sm > nm} = σ ·Sno1 · IΓ1 ·
m∏

i=2

(
Snoi

−noi−1 · IΓi

)
· 1

where 1 is a column vector of 1’s.

Proof :

Obviously, we have

P{S1 > n1, . . . ,Sm > nm} = P{Sn1 ∈ Σc
1, . . . , Snm ∈ Σc

m}.

Note that σ ·Sno1 gives the probability distribution after no1 transitions. Multiplying by IΓ1 restricts the

possibilities to only those that satisfy Soj > no1 , j = 1, 2, . . . ,m. Similarly each further pair of matrix factors

Snoi
−noi−1 ·IΓi

gives the probability distribution of states after noi
total transitions restricted to those which

satisfy Soj
> noi

, j = i, i+1, . . . ,m. Finally, the last probability distribution is multiplied by a column vector

of 1’s to give the overall survival probability for the MDPH distribution. �

The underlying Markov chain for an MDPH may not be unique, and so a natural question is how to find

an underlying Markov chain with simpler structure.
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Definition 2 (Equivalence) If S = {S ,Σ,S, σ} and S∗ = {S∗,Σ∗,S∗, σ∗} are two Markov chains un-

derlying the same phase type distribution, S and S∗ are said to be equivalent.

Let Ψ be a vector valued function having domain S and range {0, 1}m, with

Ψi(s) =

 0 if s 6∈ Σi

1 if s ∈ Σi,

for 1 ≤ i ≤ m. Let

Sk = {s |
m∑

i=1

Ψi(s)2m−i = k}, k = 0, 1, . . . , 2m − 1,

then {Sk} is a partition of S .

Definition 3 (Simple) An underlying Markov chain for an m-dimensional MDPH is called simple if |Sk| =

1 for k = 0, 1, . . . , 2m − 1.

Definition 4 (Order) If a random vector S has an MDPH distribution with underlying Markov chain

S = {S ,Σ,S, σ} and |S | = N , then S is said to be of order N .

Definition 5 (Minimal) An underlying Markov chain S = {S ,Σ,S, σ} for S with an MDPH distribution

is called minimal if for any equivalent Markov chain S∗ = {S∗,Σ∗,S∗, σ∗}, |S | ≤ |S∗|.

Definition 6 (Reducible) An underlying Markov chain S = {S ,Σ,S, σ} for an MDPH distributed random

vector S is said to be reducible if one or more states in S can be combined to form a state space S∗ for an

equivalent Markov chain S∗ = {S∗,Σ∗,S∗, σ∗}.

Example 1 If S has an m-dimensional MDPH distribution with underlying Markov chain S = {S ,Σ,S, σ}

and |S2m−1| > 1, then S = {S ,Σ,S, σ} is reducible. When the Markov chain enters S2m−1, S has been

completely realized and whatever takes place inside S2m−1 from this point onward does not change the

distribution of S. Therefore, from the standpoint of S, there needs to be only one state in S2m−1, and

S = {S ,Σ,S, σ} can be reduced accordingly.

Definition 7 (Multivariate Geometric) An MDPH distribution is said to be a multivariate geometric

distribution if each univariate marginal distribution has an underlying Markov chain which is simple (and

therefore, geometric).
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2.2 Properties and Algebra of Underlying Markov Chains

2.2.1 The Transition Matrix

The transition matrix S is the key to studying and establishing many properties of MDPH distributions.

As such, it is helpful to investigate its structure. The transition matrix S can be partitioned and written as

S =



S0,0 S0,1 . . . S0,2m−1

S1,0 S1,1 . . . S1,2m−1

...
...

. . .
...

S2m−1,0 S2m−1,1 . . . S2m−1,2m−1


,

where Si,j corresponds to the transition probabilities from states in Si to states in Sj .

Theorem 2 (Cannonical Form of Transition Matrix) The transition matrix of an underlying Markov

chain for an m-dimensional MDPH distribution can always be written in a recursive block upper triangular

form with m− 1 levels.

Proof :

Consider Si,j which is the transition probabilities from states in Si to states in Sj . The states in Si are all

mapped to a vector by Ψ and this vector can be seen as the binary representation of i. However, this vector

is also an indicator vector for the m stochastically closed classes of S . Therefore, if i has a 1 in the binary

representation where j does not, then Sij = 0. Using this observation, we can construct a general transition

matrix which includes the 0’s induced by the stochastically closed classes.

Taking S(m) to be the structure of the transition matrix for an underlying Markov chain of an m-

dimensional MDPH distribution, in univariate case,

S(1) =

X X

0 X


where X denotes a non-zero block (which may not be the same for each position). In the bivariate case,

S(2) =



X X X X

0 X 0 X

0 0 X X

0 0 0 X


=

 S(1) S(1)

0 S(1)

 .
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The general relationship is given by,

S(m) =

 S(m−1) S(m−1)

0 S(m−1)

 .

Note, again, that the blocks in the above transition matrices are generic and may not be the same.

To better understand why this is the case, consider what each block represents. The lower left block

corresponds to transitions from Σm to Σc
m so it clearly must be 0. The upper left block corresponds to

transitions between states in Σc
m. The possible transitions are exactly those which can occur in the m − 1

dimensional case, that is transitions into the other m−1 stochastically closed classes. The upper right block

corresponds to the same transitions, but here they are accompanied by a transition from Σc
m to Σm. Finally,

the lower right block corresponds to transitions between states in Σm and they are again precisely those

which can occur in the m− 1 dimensional case. �

2.2.2 Reducibility and Equivalence

Let S have an m-dimensional MDPH with S = {S ,Σ,S, σ}. Suppose that h states j1, j2, . . . , jh ∈ Sk for

some k satisfy that ∀i 6= j1, j2, . . . , jh, sj1i = sj2i = · · · = sjhi, where sji is the transition probability from

states j to i. Note that for states j1, j2, . . . , jh,
jh∑

l=j1

sj1l = · · · =
jh∑

l=j1

sjhl.

Let S∗ = {S∗,Σ∗,S∗, σ∗} = {S∗n, n ≥ 0} be a new Markov chain, where S∗ = S ∪ {j∗} − {j1, . . . , jh} with

a new state j∗ added into S∗k = Sk ∪ {j∗} − {j1, . . . , jh}. Σ∗ is the same as Σ with the obvious adjustment

to accommodate the reduction. S∗ and σ∗ are the same as S and σ with the column vectors corresponding

to j1, . . . , jh replaced by the vector of their entry-wise sums, which is the column corresponding to the new

state j∗. The summing of the columns results in h identical rows, corresponding to j1, . . . , jh. The h − 1

rows are removed and the other corresponds to j∗. Note that

P{S∗n = j∗ | S∗n−1 = j∗} =
jh∑

l=j1

sj1l

P{S∗n = i | S∗n−1 = j∗} = sj1i,

∀i 6= j1, j2, . . . , jh. Such new state j∗ is called a condensation of {j1, . . . , jh}.

Theorem 3 (Sufficient Condition for Reducibility) Let S have an m-dimensional MDPH with S =

{S ,Σ,S, σ}, and S∗ = {S∗,Σ∗,S∗, σ∗} be the Markov chain described above. Then S = {S ,Σ,S, σ} is

reducible to S∗ = {S∗,Σ∗,S∗, σ∗}.

9



Proof :

Note that the only difference between S and S∗ is that states j1, . . . , jh in S are condensed into one state j∗

in S∗ in the sense that

1. the transition probability from any state to j∗ is the sum of the transition probabilities from that state

into subset {j1, . . . , jh}, and

2. the transition probability from j∗ to any other state is the transition probability from jl (1 ≤ l ≤ h)

to that state.

It suffices to show that the exit probability of S from {j1, . . . , jh} to state i after n transitions within

{j1, . . . , jh} equals the exit probability of S∗ from j∗ to state i after n transitions at j∗. For this, let

aj1 , . . . , ajh
be non-negative real numbers with

∑h
l=1 ajl

= a ≤ 1. We then have, for any n ≥ 0 and any

i 6= j1, . . . , jh,

(aj1 , . . . , ajh
)



sj1j1 sj1j2 . . . sj1jh

sj2j1 sj2j2 . . . sj2jh

. . . . . . . . . . . .

sjhj1 sjhj2 . . . sjhjh



n

sj1i

sj2i

· · ·

sjhi



= (aj1 , . . . , ajh
)



sj1j1 sj1j2 . . . sj1jh

sj2j1 sj2j2 . . . sj2jh

. . . . . . . . . . . .

sjhj1 sjhj2 . . . sjhjh



n

1sj1i

= (aj1 , . . . , ajh
)



sj1j1 sj1j2 . . . sj1jh

sj2j1 sj2j2 . . . sj2jh

. . . . . . . . . . . .

sjhj1 sjhj2 . . . sjhjh



n−1

1(
jh∑

l=j1

sj1l)sj1i

= (aj1 , . . . , ajh
)1(

jh∑
l=j1

sj1l)nsj1i

= (
h∑

l=1

ajl
)(

jh∑
l=j1

sj1l)nsj1i,

where 1 is the column vector of 1’s. Thus, from the standpoint of S, {j1, . . . , jh} can be considered as a

single state and the state space and transition matrix can be modified accordingly to form an equivalent

10



underlying Markov chain for S. �

As discussed in Example 1, Σ∆ can always be considered a single state.

Corollary 1 If S is of order N , then S is also of order N + 1.

Proof :

This follows immediately from the reduction theorem. Simply split one state into a pair of states to create

a new underlying Markov chain which can be reduced to the original. �

Theorem 4 (Simple underlying Markov chain is unique) If S has an MDPH distribution with a sim-

ple underlying Markov chain S = {S ,Σ,S, σ}, S is unique in the sense that all the simple underlying Markov

chains for S are stochastically identical.

Proof :

Suppose S = {S ,Σ,S, σ} and S′ = {S ,Σ,S′, σ′} are two simple underlying Markov chains for S =

(S1, . . . ,Sm). Since they are simple, Sk, where 0 ≤ k ≤ 2m − 1, contains exactly one state, which we

also denote by Sk. Thus, without loss of generality we may assume that the state space and stochastically

closed classes are the same for both Markov chains. Due to the way that Sk was defined, each Sk is in a

unique set of Σi, i = 1, · · · ,m. So there is a natural association between each Sk, 0 ≤ k ≤ 2m − 1 and

the sets I of the power set of {1, . . . ,m}, with ∅ = S0 and {1, . . . ,m} = S2m−1. We will use the following

interpretation: the Markov chain is in state I ⊆ {1, . . . ,m} at time n if and only if Si ≤ n for all and only

i ∈ I.

Clearly σ∗ = σ′. To show the transition matrices S and S′ to be the same, we have, for any I, J ⊆

{1, . . . ,m},

sI,J = P{S1 = J | S0 = I}

= P{Si ≤ 1 for all and only i ∈ J | Si ≤ 0, for all and only i ∈ I}

= P{S
′1 = J | S

′0 = I} = s′I,J .

Hence S = {S ,Σ,S, σ} and S′ = {S ,Σ,S′, σ′} must be the same. �

Note that the above theorem only says that simple underlying Markov chain of an MDPH is unique. It

follows from Theorem 3 that a simple MDPH can have different, non-simple underlying Markov chains.

Example 2 If S does not have a simple underlying Markov chain, the underlying Markov chain needs

not be the only one of the same order. Consider the following two Markov chains S = {S ,Σ,S, σ} and

11



Ŝ = {S,Σ, Ŝ, σ̂} with

S = {s1, s2, s3, s4, s5, s6},

Σ1 = {s3, s6},Σ2 = {s4, s5, s6},

S =



9
50

9
50

12
50

6
50

6
50

8
50

3
50

18
50

9
50

2
50

12
50

6
50

0 0 3
5 0 0 2

5

0 0 0 3
10

3
10

4
10

0 0 0 1
10

6
10

3
10

0 0 0 0 0 1


,

Ŝ =



315
1000

225
1000

60
1000

354
1000

6
1000

40
1000

3
40

9
40

12
40

2
40

6
40

8
40

0 0 3
5 0 0 2

5

0 0 0 1263
2200

357
2200

580
2200

0 0 0 503
2200

717
2200

980
2200

0 0 0 0 0 1


,

σ =
[

1
2

1
2 0 0 0 0

]
, and σ̂ =

[
3
8

5
8 0 0 0 0

]
.

Note that Ŝ = P−1SP , where

P =



1
4

3
4 0 0 0 0

1
2

1
2 0 0 0 0

0 0 1 0 0 0

0 0 0 1
4

3
4 0

0 0 0 4
5

1
5 0

0 0 0 0 0 1


.

Furthermore, because the blocks in P match up with the blocks in S (which is to say, the blocks induced

by Σ),

P−1IΓiP = IΓi , i = 1, 2.
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If S = {S ,Σ,S, σ} is an underlying Markov chain for S then

P{S1 > n1,S2 > n2} = σ ·Sno1 · IΓ1 ·Sno2−no1 · IΓ2 · 1

= σP ·
(
P−1SP

)no1 · IΓ1 ·
(
P−1SP

)no2−no1 · IΓ2P
−1 · 1

= σ̂ · Ŝno1 · IΓ1 · Ŝno2−no1 · IΓ2 · 1

which implies that Ŝ = {S,Σ, Ŝ, σ̂} is also an underlying Markov chain for S and so is equivalent to

S = {S ,Σ,S, σ}.

2.3 Examples from Reliability Theory

2.3.1 Discrete Marshall-Olkin Distribution

Consider a system with m components subject to multiple types of fatal shocks. Let {K0,K1, . . . ,K2m−1}

be the power set of {1, . . . ,m} where Ki consists of the components j such that
∑

j|j∈Ki
2m−j = i. Note

that K0 = ∅ and K2m−1 = {1, . . . ,m}. Let pi, i = 0, . . . , 2m−1, be real numbers such that 0 ≤ pi ≤ 1 and∑2m−1

i=0 pi = 1. Any arriving shock, with probability pi, destroys all the components in Ki simultaneously.

Let Sj , j = 1, . . . ,m, be the number of shocks needed to destroy component j. The joint distribution of

(S1, . . . ,Sm) is called a multivariate discrete Marshall-Olkin distribution.

To see that this distribution is a special case of MDPH type distributions, we let {Xn, n ≥ 0} be a Markov

chain with state space {Ki, i = 0, . . . , 2m − 1}, and starting at X0 = K0 almost surely. State Ki means that

all the components in Ki have failed and the others are still operational. The transition probabilities of the

chain from state Ki to Kj are given by

sij =
∑

k|Kk⊆Kj ,Ki∪Kk=Kj

pk, Ki ⊆ Kj .

Let Σj = {Ki | Ki 3 j}, j = 1, . . . ,m, be the set of failure states of component j. Clearly,

Sj = inf{n : Xn ∈ Σj}, j = 1, . . . ,m.

Thus, the joint distribution of (S1, . . . , Sm) is an MDPH distribution.

Example 3 (Markov Chain for 2D Case) If m = 2 then the state space is {K0,K1,K2,K3} with Σ1 =
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{K1,K3} and Σ2 = {K2,K3}. The transition matrix will be:

p0 p1 p2 p3

0 p0 + p1 0 p2 + p3

0 0 p0 + p2 p1 + p3

0 0 0 1


Example 4 (Markov Chain for 3D Case) If m = 3 then the state space is

{K0,K1,K2,K3,K4,K5,K6,K7}

with Σ1 = {K1,K3,K5,K7}, Σ2 = {K2,K3,K6,K7}, and Σ3 = {K4,K5,K6,K7}. The transition matrix is

given by,

p0 p1 p2 p3 p4 p5 p6 p7

0 p0 + p1 0 p2 + p3 0 p4 + p5 0 p6 + p7

0 0 p0 + p2 p1 + p3 0 0 p4 + p6 p5 + p7

0 0 0 p0 + p1 + p2 + p3 0 0 0 p4 + p5 + p6 + p7

0 0 0 0 p0 + p4 p1 + p5 p2 + p6 p3 + p7

0 0 0 0 0 p0 + p1 + p4 + p5 0 p2 + p3 + p6 + p7

0 0 0 0 0 0 p0 + p2 + p4 + p6 p1 + p3 + p5 + p7

0 0 0 0 0 0 0 1


2.3.2 Discrete Freund Distribution

Consider a system of m components operating in a random environment. A component fails when it receives

a fatal shock from the random environment. As long as all the components are functioning, an arriving shock

destroys component i with probability pi, i = 1, . . . ,m. With probability p0, no components are destroyed.

Clearly, 0 ≤ pi ≤ 1 and
∑m

i=0 pi = 1. There is no simultaneous failure of components. Suppose component

index ij corresponds to the jth component failure. Upon the lth component failure, with the order of failures

given by i1 . . . il, an arriving shock destroys component i with probability pi|i1...il
, i 6= ij , j = 1, . . . , l and

with probability p0|i1...il
, no additional failures occur. Let Sj , j = 1, . . . ,m, be the number of shocks needed

to destroy component j. Clearly, the discrete lifetime vector (S1, . . . ,Sm) has dependent components. When

m = 2, the joint distribution of the lifetime vector is a discrete version of the bivariate extension of the

exponential distribution introduced by Freund in [6].

To see that this model is an MDPH type distribution, let the state space contain all the permutations of

each subset of {1, . . . ,m}. The initial state of the Markov chain {Xn, n ≥ 0} is ∅. Its transition probability
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matrix is given as follows, for any state K = i1 · · · il, sKK = p0|i1...il
and sKL = pi|i1...il

, if L = i1 . . . ili and

zero otherwise.

Let the set of failure states of component i be Σi = {K : i ∈ K}. Clearly

Si = min{n | Xn ∈ Σi}, i = 1, . . . ,m.

So the joint distribution of (S1, . . . , Sm) is an MDPH distribution.

Example 5 (Markov Chain for 2D Case) If m = 2 then the state space is {∅, {1}, {2}, {12}} with Σ1 =

{{1}, {12}} and Σ2 = {{2}, {12}}. The transition matrix is given by,

p0 p1 p2 0

0 p0|1 0 p2|1

0 0 p0|2 p1|2

0 0 0 1


Example 6 (Markov Chain for General 3D Case) If m = 3 the state space is:

{∅, {1}, {2}, {3}, {12}, {21}, {13}, {31}, {23}, {32}, {123}}

with failure sets

Σ1 = {{1}, {12}, {21}, {13}, {31}, {123}}, Σ2 = {{2}, {21}, {12}, {23}, {32}, {123}},

Σ3 = {{3}, {31}, {13}, {32}, {23}, {123}}.

The transition matrix is given by,

p0 p1 p2 p3 0 0 0 0 0 0 0

0 p0|1 0 0 p2|1 p3|1 0 0 0 0 0

0 0 p0|2 0 0 0 p1|2 p3|2 0 0 0

0 0 0 p0|3 0 0 0 0 p1|3 p2|3 0

0 0 0 0 p0|12 0 0 0 0 0 p3|12

0 0 0 0 0 p0|13 0 0 0 0 p2|13

0 0 0 0 0 0 p0|21 0 0 0 p3|21

0 0 0 0 0 0 0 p0|23 0 0 p1|23

0 0 0 0 0 0 0 0 p0|31 0 p2|31

0 0 0 0 0 0 0 0 0 p0|32 p1|32

0 0 0 0 0 0 0 0 0 0 1



.
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Example 7 (Markov Chain for Simple 3D Case) In the m = 3 case where pi|jk = pi|kj for i, j, k =

1, 2, 3 the Markov chain simplifies to have the state space:

{∅, {1}, {2}, {3}, {12}, {13}, {23}, {123}}

with absorbing sets

Σ1 = {{1}, {12}, {13}, {123}},

Σ2 = {{2}, {12}, {23}, {123}},

Σ3 = {{3}, {13}, {23}, {123}}.

The transition matrix is given by

p0 p1 p2 0 p3 0 0 0

0 p0|1 0 p2|1 0 p3|1 0 0

0 0 p0|2 p1|2 0 0 p3|2 0

0 0 0 p0|12 0 0 0 p3|12

0 0 0 0 p0|3 p1|3 p2|3 0

0 0 0 0 0 p0|13 0 p2|13

0 0 0 0 0 0 p0|23 p1|23

0 0 0 0 0 0 0 1



.
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Chapter 3

Basic Theory and General Structural

Properties

This chapter presents some distributional properties for MDPH distributions. Section 3.1 provides a number

of closure properties of MDPH. In section 3.2, we investigate dependence structures of MDPH distributions.

The relationship between MDPH distributions and MPH distributions is presented in Section 3.3.

Most closure properties are obtained via direct constructions of underlying Markov chains that generate a

random vector with a MDPH distribution and the desired characteristics. Since discrete phase type random

variables are monotone functionals of the underlying Markov chain, many dependence properties of a MDPH

distribution can be derived from the dependence properties of discrete-time Markov chains. The properties

we obtain here not only form a useful set of tools for applications of MDPH distributions (See Chapter 5),

but they also provide a new way of understanding dependencies in MPH distributions. In fact, we show

that positive dependence of multivariate continuous phase type distributions may be inherited from positive

dependence in an underlying MDPH distribution.

3.1 Closure Properties

Theorem 5 (Marginal Distributions) If S has an m-dimensional MDPH distribution with underlying

Markov chain S = {S ,Σ,S, σ} and SJ = (Sj1 ,Sj2 , . . . ,Sjk
) is a k-dimensional marginal of S, then SJ

has a k-dimensional MDPH distribution with underlying Markov chain S = {S ,ΣJ,S, σ}, where ΣJ =

{Σj1 ,Σj2 , . . . ,Σjk
}.
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Proof :

For i = 1, . . . ,m, Si = min{n | Sn ∈ Σi}, so, for i = 1, . . . , k, Sji
= min{n | Sn ∈ Σji

}. This implies that SJ

has a k-dimensional MDPH distribution with underlying Markov chain S = {S ,ΣJ,S, σ} as claimed. �

Proposition 1 (Finite Mixtures) If S∗ and S′ have m-dimensional MDPH distributions, then for 0 ≤

α ≤ 1, S = αS′ + (1− α)S∗ also has an m-dimensional MDPH distribution.

Proof :

Suppose S∗ and S′ have underlying Markov chains S∗ = {S∗,Σ∗,S∗, σ∗} and S′ = {S ′,Σ′,S′, σ′} respec-

tively. Let S have an underlying Markov chain S = {S ,Σ,S, σ} where

S = S ′ ∪ S∗

Σi = Σ′i ∪ Σ∗i

S =

 S′ 0

0 S∗


σ = [ α · σ′, (1− α) · σ∗ ].

Then,

P{S1 > n1, . . . ,Sm > nm} = σ ·Sno1 · IΓ1 ·
m∏

i=2

(
Snoi

−noi−1 · IΓi

)
· 1

= α · σ′ ·S′no1 · IΓ′1
·

m∏
i=2

(
S′(noi

−noi−1 ) · IΓ′i

)
· 1

+ (1− α) · σ∗ ·S∗no1 · IΓ∗1
·

m∏
i=2

(
S∗(noi

−noi−1 ) · IΓ∗i

)
· 1

= α ·P{S′1 > n1, . . . ,S′m > nm} + (1− α) ·P{S∗1 > n1, . . . ,S∗m > nm}

and S is a mixture of S∗ and S′. �

Proposition 2 (Order Statistics) If random vectors S and O have m-dimensional MDPH distributions

with underlying Markov chains S = {S ,Σ,S, σ} and O = {S ,Ω,S, σ} respectively, where

Ω = {Ω1, · · · ,Ωm},

Ωi =
m⋃

k=i

Ok,
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and

Ok = {sj |
m∑

i=1

Ψi(sj) = k},

then the order statistics of S have the same distribution as O.

Proof :

It is easy to see that Ω = {Ω1, · · · ,Ωm} is a set of stochastically closed classes that satisfy the conditions in

the definition of MDPH distributions with Ω0 = Σ0 and Ω∆ = Σ∆. Also note that Ωi consists of the states sj

that are in at least i classes in Σ. It is not difficult to see that Oi ≤ ni if and only if mini{S1, · · · ,Sm} ≤ ni

where mini is the ith order statistic of S. That is, O1 < n1 if and only if there is an i such that Si < n1,

O2 < n2 if and only if there is an i, j such that Si < n2 and Sj < n2. So,

P{O1 ≤ n1, · · · ,Om ≤ nm} = P{min1{S1, · · · ,Sm} ≤ n1, · · · ,minm{S1, · · · ,Sm} ≤ nm}.

Thus, the vector of order statistics of S has an MDPH with the underlying Markov chain O = {S ,Ω,S, σ}.

�

Let (S1, . . . ,Sm) be a vector of discrete lifetimes, and S(1) = min{S1, . . . ,Sm}. Given that all the items

have survived up to time k, that is, S(1) ≥ k, Si − k, 1 ≤ i ≤ m, are the (discrete) residual lifetimes.

Proposition 3 If S = (S1, . . . ,Sm) has an m-dimensional MDPH distribution with underlying Markov chain

S = {S ,Σ,S, σ}, then [(S1−k, . . . ,Sm−k) | S(1) ≥ k] has an MDPH distribution with the underlying Markov

chain S = {S ,Σ,S, σk} where σk = σSk. That is, the vector of residual lifetimes has an underlying Markov

chain that has the same state space, stochastically closed sets, transition matrix as those of S, but the initial

distribution σk = σSk.

Proof :

It is easy to see that

[(S1, . . . ,Sm) | S(1) ≥ k] = (k, . . . , k) + (min{n|Sk+n ∈ Σ1}, . . . ,min{n|Sk+n ∈ Σm}).

From the Markovian property, (min{n|Sk+n ∈ Σ1}, . . . ,min{n|Sk+n ∈ Σm}) has the same distribution as

that of

(min{n|S∗n ∈ Σ1}, . . . ,min{n|S∗n ∈ Σm}),

where S = {S ,Σ,S, σk} where σk = σSk. So the distribution of the joint residual lifetimes,

[(S1 − k, . . . ,Sm − k) | S(1) ≥ k],
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has an MDPH with underlying Markov chain S = {S ,Σ,S, σk}. �

To study the concatenation of phase type distributed random vectors, we need the following concepts.

Definition 8 (Direct Product) Let S∗ = {S∗,Σ∗,S∗, σ∗} and S′ = {S ′,Σ′,S′, σ′} be two Markov chains.

S = {S ,Σ,S, σ} is said to be the direct product of S∗ and S′ (written S = S∗ ⊗ S′) if and only if

S = S∗ ⊗ S ′

Σ = {Σ∗i ⊗ S ′ | Σ∗i ∈ Σ∗} ∪ {S∗ ⊗ Σ′j | Σ′j ∈ Σ′},

S = S∗ ⊗S′,

and σ = σ∗ ⊗ σ′,

where A⊗B is understood to be the direct (or Kronecker) product for matrices when A and B are matrices

and the direct (or Cartesian) product for sets when A and B are sets.

The transition probabilities of a direct product of two Markov chains can be explicitly calculated as

follows:

P{S0 = (s∗i , s ′j)} = P{S∗0 = s∗i } ·P{S′0 = s ′j}

= σ∗i · σ′j
and

P{Sn+1 = (s∗i2 , s
′
j2) | Sn = (s∗i1 , s

′
j1)} = P{S∗n+1 = s∗i2 | S∗n = s∗i1} ·P{S′n+1 = s ′j2 | S′n = s ′j1}

= s∗i1i2 · s
′
j1j2 .

Lemma 1 If S∗ and S′ are independent Markov chains underlying k and m dimensional MDPH distributions

S∗ and S′ respectively, then S = S∗ ⊗ S′ is an underlying Markov chain for a k + m dimensional MDPH

distribution S = (S∗,S′).

Proof :

Clearly, Σ0 = Σ∗0 ⊗ Σ′0 and Σ∆ = Σ∗∆ ⊗ Σ′∆.

P{Sn ∈ Σ∆} = P{Sn = (s∗∆, s ′∆)}

=
∑

i

∑
j

P{Sn = (s∗∆, s ′∆) | Sn−1 = (s∗i , s ′j)}P{Sn−1 = (s∗i , s ′j)}

=
∑

i

∑
j

P{S∗n = s∗∆ | S∗n−1 = s∗i }P{S∗n−1 = s∗i } ·P{S′n = s ′∆ | S′n−1 = s ′j}P{S′n−1 = s ′j}

=
∑

i

P{S∗n = s∗∆ | S∗n−1 = s∗i }P{S∗n−1 = s∗i }
∑

j

P{S′n = s ′∆ | S′n−1 = s ′j}P{S′n−1 = s ′j}

= P{S∗n = s∗∆} ·P{S′n = s ′∆}.
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Since S∗ and S′ are underlying Markov chains, taking the limit we have:

lim
n→∞

P{Sn ∈ Σ∆} = lim
n→∞

P{S∗n = s∗∆} ·P{S′n = s ′∆}

= 1.

Furthermore, ∀i, j, Σ∗i ( S∗ and Σ′j ( S ′. This implies

{Σ∗i ⊗ S ′ | Σ∗i ∈ Σ∗} ∩ {S∗ ⊗ Σ′j | Σ′j ∈ Σ′} = ∅,

so,

|Σ| = |Σ∗|+ |Σ′| = k + m.

Since there are k+m stochastically closed classes, S is an underlying Markov chain for the k+m dimensional

MDPH distribution of S. �

Lemma 2 (Concatenation of Simple Distributions) If S∗ and S′ are simple, then so is S∗ ⊗ S′.

Proof :

S∗ and S′ being simple implies that ∀i, j, |S∗i | = |S ′j | = 1 so |S∗i ⊗ S ′j | = 1. Therefore, S∗ ⊗ S′ is simple. �

3.2 Dependence Properties

3.2.1 Independence Results

Proposition 4 Suppose S = (S∗,S′), where S∗ and S′ have MDPH distributions with underlying Markov

chains S∗ = {S∗,Σ∗,S∗, σ∗} and S′ = {S ′,Σ′,S′, σ′}, respectively. If S is an underlying Markov chain of

S, with S = S∗ ⊗ S′, then S∗ and S′ are independent.

Proof :

Let sk = (sk0 , sk1 , sk2 , . . . ) be a realization of S. S = S∗ ⊗ S′ implies

sk = ((s∗i0 , s
′
j0), (s

∗
i1 , s

′
j1), . . . )

= (si∗, sj′),
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where si∗ = (s∗i0 , s
∗
i1

, s∗i2 , . . . ), and sj′ = (s′j0 , s
′
j1

, s′j2 , . . . ) are sample paths of S∗ and S′ respectively. So,

P{sk} = P{(si∗, sj′)}

= σ∗i0σ
′
j0

∞∏
m=0

s∗imim+1
s′jmjm+1

= (σ∗i0

∞∏
m=0

s∗imim+1
)(σ′j0

∞∏
m=0

s′jmjm+1
)

= P{si∗}P{sj′}.

Taking In∗ = {i | s∗i satisfies S∗ = n∗} and Jn′ = {j | s′j satisfies S′ = n′}, we have,

P{S∗ = n∗,S′ = n′} =
∑
i∈In∗

∑
j∈Jn′

P{(s∗i , s
′
j)}

=
∑
i∈In∗

∑
j∈Jn′

P{s∗i }P{s′j}

=
∑
i∈In∗

P{s∗i }
∑
j∈Jn′

P{s′j}

= P{S∗ = n∗}P{S′ = n′}.

�

Note that the underlying Markov chain may not be unique and the converse of the above result is not

generally true, as is shown in the following example.

Example 8 Consider Ŝ from Example 2. S is the vector of two independent random variables whose

marginal distributions have transition matrices

S1 =


3
10

3
10

4
10

1
10

6
10

3
10

0 0 1

 .

and

S2 =

 3
5

2
5

0 1


It is easy to see that S = S1 ⊗S2, but, Ŝ 6= S1 ⊗S2.

3.2.2 Dependence Structures

Dependence structures of multivariate phase-type distributions can be examined using stochastic comparison

methods and the numerical methods to be discussed in Chapter 5. Numerical experiments with MPH
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distributions may provide new insight into their dependence structures beyond the properties that can be

established through various comparison techniques.

Many different notions of dependence have been introduced and studied extensively in the literature (see,

for example, [20] and [8]). Here we only discuss notions of dependence that are most relevant to this research.

These include dependence orders between two random vectors and dependence among the components of a

random vector.

To express the nature of dependence among the components of a random vector, one can of course use

the covariance matrix. X is said to be positively (negatively) pairwise-correlated if the covariance matrix

Cov(Xi, Xj) ≥ (≤) 0, for all i 6= j. However, the following notions of dependence are stronger and frequently

used in the literature.

Definition 9 Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be two Rm-valued random vectors.

1. X is said to be larger (smaller) than Y in the upper (lower) orthant order, denoted by X ≥uo (≤lo) Y,

if P (X > (≤) x) ≥ P (Y > (≤) x), for all x ∈ Rm.

2. X is said to be more upper (lower) orthant dependent than Y if X ≥uo (≤lo) Y, and Xi =st Yi for all

i. (‘=st’ denotes the equality in distribution).

Note that the orthant orders, coupled with identical marginals, emphasize the comparisons of dependence

strengths of the two vectors by separating the marginals from consideration.

Definition 10 Let X = (X1, . . . , Xm) be an Rm-valued random vector. Let XI = (XI
1 , . . . , XI

m) denote a

vector of real random variables such that Xj =st XI
j for each j and XI

1 , . . . , XI
m are independent.

1. X is said to be positively upper (lower) orthant dependent (PUOD, PLOD) if X ≥uo (≤lo) XI . X is

said to be negatively upper (lower) orthant dependent (NUOD, NLOD) if X ≤uo (≥lo) XI .

2. X is said to be associated if Cov(f(X), g(X)) ≥ 0 whenever f and g are non-decreasing. X is said

to be negatively associated if for every subset K ⊆ {1, . . . ,m}, Cov(f(Xi, i ∈ K), g(Xj , j ∈ Kc)) ≤ 0

whenever f and g are non-decreasing.

It is known ([4], [19]) that

X is (positively) associated =⇒ X is PUOD and PLOD, (3.1)

X is negatively associated =⇒ X is NUOD and NLOD. (3.2)
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The PLOD (PUOD, NLOD, NUOD)-property of a random vector means that its joint distribution or survival

function can be bounded below or above by the products of its marginal distributions or survival functions.

Various properties of these classifications have been discussed in [20] and [19].

We first discuss a fundamental property of positive association, from which many useful properties follow.

Theorem 6 Let X be an Rm-valued random variable and Y be an Rs-valued random variable. If

1. X is associated,

2. (Y | X = x) is associated for all x, and

3. E[f(Y) | X = x] is increasing in x for all increasing function f ,

then (X,Y) is associated.

Proof :

Let EZ denote the expectation with respect to the distribution of random variable Z. For any two increasing

functions f and g, we have

E[f(X,Y)g(X,Y)] = EX[EY|X[f(X,Y)g(X,Y) | X]]

≥ EX[EY|Xf(X,Y)EY|Xg(X,Y) | X]

≥ EX[EY|Xf(X,Y) | X]E[EY|Xg(X,Y) | X] = Ef(X,Y)Eg(X,Y),

where the first inequality follows from the association property of Y|X = x, and the second inequality follows

from the association property of X and the stochastic monotonicity property (3). �

The following properties of association can be easily verified from either Definition 10 or Theorem 6.

Theorem 7 1. Any real random variable is associated.

2. If a Rm-valued random vector X is associated and f : Rm → Rs is increasing (or decreasing), then

f(X) is associated.

3. Assume that a Rm-valued random vector X is associated and a Rs-valued random vector Y is associ-

ated. If X and Y are independent, then (X,Y) is associated.

4. Suppose that random vector X(n) is associated for any n ≥ 1. If X(n) converges weakly to X, then X

is also associated.

The following properties of orthant dependence can be easily verified from Definition 10.
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Theorem 8 Let fi : R → R be a real valued function, 1 ≤ i ≤ m.

1. If (X1, . . . , Xm) is PUOD (PLOD) then (f1(X1), . . . , fm(Xm)) is also PUOD (PLOD) for all increasing

functions fi, 1 ≤ i ≤ m.

2. If (X1, . . . , Xm) is PUOD (PLOD) then (f1(X1), . . . , fm(Xm)) is PLOD (PUOD) for all decreasing

functions fi, 1 ≤ i ≤ m.

3. If (X1, . . . , Xm) is NUOD (NLOD) then (f1(X1), . . . , fm(Xm)) is also NUOD (NLOD) for all increas-

ing functions fi, 1 ≤ i ≤ m.

4. If (X1, . . . , Xm) is NUOD (NLOD) then (f1(X1), . . . , fm(Xm)) is NLOD (NUOD) for all decreasing

functions fi, 1 ≤ i ≤ m.

5. Suppose that random vector X(n) is PUOD ( PLOD, NUOD, NLOD) for any n ≥ 1. If X(n) converges

weakly to X, then X is also PUOD (PLOD, NUOD, NLOD).

We can use Theorems 6 and 7 to obtain a sufficient condition for the association of MDPH.

Proposition 5 Suppose that (S1, . . . ,Sm) has an MDPH distribution with an underlying Markov chain

{Sn, n ≥ 0} with state space S ⊆ Rh such that

1. S0 is associated,

2. (Sn | Sn−1 = s) is associated, and

3. Ef(Sn | Sn−1 = s) is increasing in s for any increasing function f .

Then (S1, . . . ,Sm) is associated.

Proof :

We first show that (S0, . . . , Sk) is associated for any k ≥ 0 via induction. The claim is true for k = 0 because

of (1). Suppose that (S0, . . . , Sk−1) is associated. It follows from the Markovian property that

(Sk | Sk−1 = sk−1, . . . , S0 = s0), and (Sk | Sk−1 = sk−1)

have the same distribution. Thus, by (2), (Sk | Sk−1 = sk−1, . . . , S0 = s0) is associated, and by (3),

Ef(Sk | Sk−1 = sk−1, . . . , S0 = s0) = Ef(Sk | Sk−1 = sk−1)
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is increasing for any increasing function f . From Theorem 6, we have that (S0, . . . , Sk) is associated. Consider

Sk
j = min{Sj , k} = min{n ≤ k : Sn ∈ Σj}, 1 ≤ j ≤ m.

Obviously, Sk
j , 1 ≤ j ≤ m, are non-increasing functions of (S0, . . . , Sk). It follows from Theorem 7 (2) that

(Sk
1 , . . . ,Sk

m) is associated. As k →∞, Theorem 7 (4) implies that (S1, . . . ,Sm) is associated. �

The condition (3) in Proposition 5 is known as the stochastic monotonicity of a Markov chain, and has

been widely studied in the literature (see, for example, [12], [13]).

3.3 Relationship with Multivariate Phase Type Distributions

In this section, we consider the class of multivariate phase-type distributions studied by Assaf, et al. ([2]).

Following that paper, consider a continuous-time, right-continuous Markov chain, X = {X(t), t ≥ 0} on a

finite state space S with generator Q. Let Σi, i = 1, . . . ,m, be m nonempty stochastically closed subsets of

S such that ∩m
i=1Σi is a proper subset of S. It is assumed that absorption into ∩m

i=1Σi is certain. Since we

are interested in the process only until it is absorbed into ∩m
i=1Σi, we may assume, without loss of generality,

that ∩m
i=1Σi consists of one state, which we shall denote by S∆. Thus, without loss of generality, we may

write S = Σ0 ∪ (∪m
i=1Σi) for some Σ0 ⊂ S. Let β be an initial probability vector on S such that β(S∆) = 0.

Then we can write β = (α, 0). Define

Ti = inf{t ≥ 0 : X(t) ∈ Σi}, i = 1, . . . ,m. (3.3)

As in [2], for simplicity, we shall assume that P (T1 > 0, T2 > 0, . . . , Tm > 0) = 1. The joint distribution

of (T1, T2, . . . , Tm) is called a multivariate phase-type distribution (MPH) with representation (α, Q, Σi, i =

1, . . . ,m), and (T1, T2, . . . , Tm) is called a phase-type random vector. The class of MPH distributions includes

the well-known Marshall-Olkin distribution (Marshall and Olkin 1967), which is one of the most widely

discussed multivariate life distributions in reliability theory (see, for example, [3]).

The MPH distributions defined by (3.3), their properties, and some related applications in reliability

theory are discussed in [2]. As in the univariate case, those MPH distributions, their densities, Laplace

transforms, and moments can be written in a closed form. The set of m-dimensional MPH distributions is

dense in the set of all distributions on [0,∞)m.

The relation between MPH distributions and MDPH distributions is given below.

Theorem 9 Let (T1, . . . , Tm) be a random vector from a MPH distribution as defined in (3.3). Then we
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have,

Tj =
Sj∑

i=1

Ei, j = 1, 2, . . . ,m, (3.4)

where (S1, . . . ,Sm) is a random vector from an MDPH distribution and Ei, i = 1, 2, . . . , have independent

and identically distributed exponential distributions.

Proof :

Let {X(t), t ≥ 0} be the underlying Markov chain for T = (T1, . . . , Tm) with representation (α, Q, Σi, i =

1, . . . ,m). Since the state space is finite, we can use uniformization (see, for example, [18]) to rewrite X(t)

as

X(t) = XN(t), t ≥ 0,

where {Xn, n ≥ 0} is a discrete-time (embedded) Markov chain and {N(t), t ≥ 0} is a Poisson process with

rate λ which is independent of {Xn, n ≥ 0}. Define

Sj = min{n|Xn ∈ Σj}, j = 1, . . . ,m.

So Sj is the number of transitions of Markov chain {X(t), t ≥ 0} prior to absorption to Σj . Obviously,

S = (S1, . . . ,Sm) has a distribution that is MDPH. Suppose Ei, i = 1, 2, . . . , have independent and identically

distributed exponential distributions with parameter λ. Here each Ei denotes a sojourn time between two

transitions of {X(t), t ≥ 0}. Then we have Tj =
∑Sj

i=1 Ei, j = 1, 2, . . . ,m. �

Hereafter, S is said to be the underlying MDPH for T associated by parameter λ.

Corollary 2 The transition function P (t) of {X(t), t ≥ 0} is given by:

P (t) = e−λteλtS =
∞∑

k=0

e−λt(λt)k

k!
Sk.

Furthermore if S is given, the generator Q = λS − λI, or, if Q is given, S = I + 1
λQ for some constant

λ > 0.

From (3.4), we can now show that MPH distributions inherit some positive dependence properties from

underlying MDPH distributions.

Theorem 10 Let (T1, . . . , Tm) be a random vector with the multivariate phase type distribution as described

in (3.4).

1. If (S1, . . . ,Sm) is PUOD (PLOD), then (T1, . . . , Tm) is also PUOD (PLOD).
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2. If (S1, . . . ,Sm) is positively associated, then (T1, . . . , Tm) is also positively associated.

Proof :

From (3.4), we have

(T1, . . . , Tm) | {S1 = n1, . . . ,Sm = nm} = (
n1∑
i=1

Ei, . . . ,

nm∑
i=1

Ei). (3.5)

It follows from Theorem 7 (1), (2) and (3) that (T1, . . . , Tm) | {S1 = n1, . . . ,Sm = nm} is associated.

(1) We only prove the PUOD case, and the other case is similar. Since (T1, . . . , Tm) | {S1 = n1, . . . ,Sm =

nm} is also PUOD, then we have

E[f1(T1) . . . fm(Tm) | {S1 = n1, . . . ,Sm = nm}] ≥
m∏

i=1

E[fi(Ti) | {S1 = n1, . . . ,Sm = nm}].

for all non-negative, increasing functions f1, . . . , fm. Unconditioning on S1, . . . , Sm yields that

E[
m∏

i=1

fi(Ti) | S1, . . . ,Sm] ≥
m∏

i=1

E[fi(Ti) | S1, . . . ,Sm].

Obviously,

gi(ni) = E[fi(Ti) | {S1 = n1, . . . ,Sm = nm}] = Efi(
ni∑

j=1

Ej)

is increasing in ni, i = 1, . . . m. Since (S1, . . . ,Sm) is PUOD, then it follows from Theorem 8 (1) that

(g1(S1), . . . , gm(Sm)) is also PUOD. That is,

E
m∏

i=1

fi(Ti) = E(E[
m∏

i=1

fi(Ti) | S1, . . . ,Sm])

≥ E
m∏

i=1

gi(Si) ≥
m∏

i=1

Egi(Si) =
m∏

i=1

Efi(Ti).

Thus, (T1, . . . , Tm) is PUOD.

(2) To show that (T1, . . . , Tm) is associated, we need Theorem 6. Consider the following three facts.

1. (S1, . . . ,Sm) is associated.

2. (T1, . . . , Tm) | {S1 = n1, . . . ,Sm = nm} is associated.

3. Since Ei, i = 1, 2, . . . , defined in (3.5), are independent and identically distributed, we have that

E[f(T1, . . . , Tm) | {S1 = n1, . . . , Sm = nm}] = Ef(
∑n1

i=1 Ei, . . . ,
∑nm

i=1 Ei) is increasing in (n1, . . . , nm),

for any increasing function f defined on Rm.
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From Theorem 6, we obtain that (T1, . . . , Tm) is associated. �

As illustrated in Theorem 10, the positive dependence properties of MPH distributions inherit from similar

properties of an underlying MDPH distributions. Therefore the dependence analysis of MDPH distributions

provides a tool for understanding the dependence structure of MPH distributions.
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Chapter 4

Bivariate Discrete Phase-type

Distributions

This chapter provides an analysis of bivariate MDPH distributions. In Section 4.1, an explicit expression

for the joint survival function of bivariate DPH distributions is given. Section 4.2 focuses on the simple

bivariate DPH, and also highlights a sufficient condition for positive and negative dependence in simple

bivariate DPH distributions. In Sections 4.3 and 4.4, we discuss the bivariate discrete Marshall-Olkin and

Freund distributions. We show that the discrete Marshall-Olkin has univariate marginals with geometric

distributions and obtain sufficient conditions for a discrete Marshall-Olkin distribution to be PQD or NQD.

This shows that, unlike the continuous case, the discrete Marshall-Olkin distribution is not always positively

dependent. We also show that, unlike the continuous case, that the discrete Freund distribution cannot be

positively dependent, and establish a sufficient condition for the discrete Freund distribution to be NQD.

In Section 4.5 we look at the relationship between bivariate MDPH distributions and bivariate MPH

distributions with particular focus on the Marshall-Olkin and Freund distributions. We show that all contin-

uous Marshall-Olkin and Freund distributions have underlying MDPH distribution that are Marshall-Olkin

and Freund, respectively. Li in [10] showed that if the probability that destroys component i in a Freund

distribution becomes larger when the other component fails first, the Freund distribution is positively depen-

dent. We settle an open question by showing that if the probability that destroys component i in a Freund

distribution becomes smaller when the other components fail first, the Freund distribution is negatively de-

pendent. Note that, unlike for positive dependence, the analysis of negative dependence poses a considerable
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challenge because of lack of the tools such as stochastic monotonicity.

4.1 General Form of Bivariate Discrete Phase-type Distribution

If S = (S1,S2) has a bivariate DPH distribution, the underlying Markov chain S = {S ,Σ,S, σ} is of the form:

state space S = S0

⋃
S1

⋃
S2

⋃
S3, |Si| ≥ 1 and |S3| = 1, Σ1 = S1

⋃
S3, Σ2 = S2

⋃
S3 and the transition

matrix can be partitioned as follows,

S =



S00 S01 S02 S03

0 S11 0 S13

0 0 S22 S23

0 0 0 1


.

We assume that P{S1 > 0,S2 > 0} = 1, that is, the underlying Markov chain starts in S0 almost surely.

The marginal distributions of S1 and S2 have underlying Markov chains S1 and S2, respectively. S1 =

{S(1),Σ1,S(1), σ} where S(1) = {S0,S2, (S1,S3)}, with (S1,S3) collapsed to a single state, and Σ1 = (S1,S3)

(See Section 2.2.), and

S(1) =


S00 S02 S011 + S03

0 S22 S23

0 0 1


Similarly, S2 = {S(2),Σ2,S(2), σ} where S(2) = {S0,S1, (S2,S3)}, Σ2 = {(S2,S3)} and

S(2) =


S00 S01 S021 + S03

0 S11 S13

0 0 1

 .

The joint and marginal survival functions can be calculated explicitly. For any probability vector α and

any subset S̄ ⊆ S , we denote αS̄ the sub-vector of α by removing its i-th entry for all i /∈ S̄ .

P{S1 > n1} = σS(1)
n1


1

1

0

 = σS0S
n1
001 + σS0

n1∑
i=1

Sn1−i
00 S02S

i−1
22 1

P{S2 > n2} = σS(2)
n2


1

1

0

 = σS0S
n2
001 + σS0

n2∑
i=1

Sn2−i
00 S01S

i−1
11 1
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and, without loss of generality, taking n1 ≤ n2, we have,

P{S1 > n1,S2 > n2} = σSn1IΣ0S
n2−n1



1

1

0

0


= σS0S

n1
00 [Sn2−n1

00 1 +
n2−n1∑

i=1

Sn2−n1−i
00 S01S

i−1
11 1].

4.2 Simple Bivariate Discrete Phase-type Distributions

Let S = (S1,S2) be a simple bivariate DPH random vector with underlying Markov chain S = {S ,Σ,S, e1}

where S = {s0, s1, s2, s3}, Σ1 = {s1, s3}, Σ2 = {s2, s3} and

S =



s00 s01 s02 s03

0 s11 0 s13

0 0 s22 s23

0 0 0 1


,

with sij ≥ 0, and e1 a {1, 0}-vector with 1 in the first entry and 0’s elsewhere. The marginals S1 and S2

have the following underlying Markov chains S1 and S2, respectively.

S1 = {S(1),Σ1,S(1), e1} where S(1) = {s0, s2, (s1, s3)} with (s1, s3) considered a single state. Σ1 =

{(s1, s3)}.

S(1) =


s00 s02 s01 + s03

0 s22 s23

0 0 1


Similarly, S2 = {S(2),Σ2,S(2), e1} where S(2) = {s0, s1, (s2, s3)}, Σ2 = {(s2, s3)} and

S(2) =


s00 s01 s02 + s03

0 s11 s13

0 0 1

 .
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So,

P{S1 > n1} = e1S(1)
n1


1

1

0


= sn1

00 +
n1∑
i=1

sn1−i
00 s02s

i−1
22

P{S2 > n2} = e1S(2)
n2


1

1

0


= sn2

00 +
n2∑
i=1

sn2−i
00 s01s

i−1
11

and, without loss of generality, taking n1 ≤ n2,

P{S1 > n1,S2 > n2} = e1S
n1



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Sn2−n1



1

1

0

0


= sn1

00

(
sn2−n1
00 +

n2−n1∑
i=1

sn2−n1−i
00 s01s

i−1
11

)
(4.1)

If s00 6= s22 and s00 6= s11, then these simplify to

sn1
00 + s02

sn1
00 − sn1

22

s00 − s22
, sn2

00 + s01
sn2
00 − sn2

11

s00 − s11
, and sn1

00

(
sn2−n1
00 + s01

sn2−n1
00 − sn2−n1

11

s00 − s11

)
,

respectively. Furthermore, the following results will typically assume without loss of generality that s00 6= s22

and s00 6= s11, since it suffices to take limits to get similar results in the case of equality.

The joint probability mass function for a simple bivariate DPH vector is given by

P{S1 = n1,S2 = n2} =



sn2−1
00 s02s

n1−n2−1
22 s23 n1 > n2

sn2−1
00 s03 n1 = n2

sn1−1
00 s01s

n2−n1−1
11 s13 n1 < n2.
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Although the algebra is cumbersome, it is straightforward to verify with a computer algebra system the

following formula for the moment generating function:

M(t1, t2) =
∞∑

n1=1

∞∑
n2=1

P{S1 = n1,S2 = n2}et1n1+t2n2

=
∞∑

n1=1

∞∑
n2=n1+1

sn1−1
00 s01s

n2−n1−1
11 s13e

t1n1+t2n2 +
∞∑

n2=1

∞∑
n1=n2+1

sn2−1
00 s02s

n1−n2−1
22 s23e

t1n1+t2n2

+
∞∑

n2=1

sn2−1
00 s03e

n2(t1+t2)

=
1

e−t1−t2 − s00

(
s01s13

e−t2 − s11
+

s02s23

e−t1 − s22
+ s03

)
.

To discuss the properties of bivariate DPH, we need to avoid some trivial cases. One of them is the

following.

Definition 11 (Degenerate) If s00 + s01 = 0 or s00 + s02 = 0, then S is said to be degenerate.

Observe that if s00 + s01 = 0, then P{S2 = 1} = s02 + s03 = 1. That is, S2 is degenerate at the constant

1. Similarly, if s00 + s02 = 0, then S1 is degenerate at the constant 1. In these cases, S1 and S2 are trivially

independent. Further results will assume that S is not degenerate.

Theorem 11 S has a bivariate geometric distribution ⇐⇒ s00 + s01 = s11 and s00 + s02 = s22.

Proof :

(⇐)

Assume s00 + s01 = s11; so

P{S2 > 1} = (s00 + s01)

= s11.

(4.2)

Since

P{S2 > n2} = sn2
00 +

n2∑
i=1

sn2−i
00 s01s

i−1
11

= s00(sn2−1
00 +

n2−1∑
i=1

sn2−1−i
00 s01s

i−1
11 ) + s01s

n2−1
11

= s00P{S2 > n2 − 1} + s01s
n2−1
11 ,

(4.3)
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a simple induction argument based upon (4.2) and (4.3) can be used to show that

P{S2 > n2} = sn2
11

= e1 ·

s11 s13

0 1

n2

·

1

0

 (4.4)

which implies that S2 has a simple underlying Markov chain S2 = {{s1, s3}, {s3},S(2∗), e1} where

S(2∗) =

s11 s13

0 1

 .

Similarly, for s00 + s02 = s22, S1 has a simple underlying Markov chain S1 = {{s2, s3}, {s3},S(1∗), e1} where

S(1∗) =

s22 s23

0 1

 .

(⇒) Suppose that in addition to the underlying Markov chain inherited from the joint distribution, S2

has a simple underlying Markov chain with transition matrix

S(2∗) =

s′00 s′01

0 1

 .

Then,

P{S2 > 1} = s′00

= s00 + s01

and

P{S2 > 2} = s′200

= s00(s00 + s01) + s01s11

= s00s
′
00 + s01s11

which implies

s′00(s
′
00 − s00) = s01s11.

Because s01 = s′00 − s00, we have if s01 > 0,

s′00s01 = s01s11

s′00 = s11

s00 + s01 = s11.
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By a parallel argument, it is easy to see that if s02 > 0, then s00 + s02 = s22.

Finally consider the case that s01 = 0 (s02 = 0). Since the Markov chain starts in s0 with probability

1, s1 (s2) is unreachable so we can change s11 (s22) so that an equivalent underlying Markov chain has the

property that s′00 = s11 (s′00 = s22). �

Note that the condition in Theorem 11 is not surprising. Since s00 + s01 = s11 and s00 + s02 = s22 are

equivalent to s02 + s03 = s13 and s01 + s03 = s23 respectively, it follows from Theorem 3 that the marginal

distributions of S1 and S2 have simple underlying Markov chains.

Theorem 12 S1 and S2 are independent ⇐⇒ s00 + s01 = s11, s00 + s02 = s22 and s11s22 = s00.

Proof :

(⇒) Suppose S1 and S2 are independent. First consider the case when s01 = 0. This implies that S1 ≥ S2

almost surely so S1 and S2 are not independent. Therefore, s01 > 0 and by a similar argument, s02 > 0.

If S1 and S2 are independent, then

P{S1 > n1,S2 > n2} = P{S1 > n1}P{S2 > n2}.

For n1 = 1 and n2 = 1;

s00 = (s00 + s02)(s00 + s01) (4.5)

and n1 = 1 and n2 = 2;

s00(s00 + s01) = (s00 + s02)(s00(s00 + s01) + s01s11). (4.6)

Substituting (4.5) into the left side of (4.6) gives:

(s00 + s02)(s00 + s01)2 = (s00 + s02)(s00(s00 + s01) + s01s11)

(s00 + s01)2 − s00(s00 + s01) = s01s11

(s00 + s01)(s00 + s01 − s00) = s01s11

s01(s00 + s01) = s01s11

s11 = s00 + s01. (4.7)

Similarly, for n1 = 2 and n2 = 1

s22 = s00 + s02. (4.8)
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Also (4.5), (4.7) and (4.8) imply

s00 = s11s22.

(⇐)

Suppose s00+s01=s11, s00+s02=s22 and s00=s11s22. (4.4) implies that

P{S2 > n2} = sn2
11

and

P{S1 > n1} = sn1
22 ,

so for any n1 ≤ n2,

P{S1 > n1,S2 > n2} = sn1
00 (sn2−n1

00 +
n2−n1∑

i=1

sn2−n1−i
00 s01s

i−1
11 )

= sn1
00P{S2 > n2 − n1}

= sn1
00 sn2−n1

11

= (s22s11)n1sn2−n1
11

= sn1
22 sn2

11

= P{S1 > n1}P{S2 > n2}.

(4.9)

�

For example, let s00 = s01 = s02 = s03 = 1/4, and s11 = s13 = s22 = s23 = 1/2, then the conditions in

Theorem 12 are satisfied, and the corresponding S1 and S2 are independent.

Lemma 3 If S has a bivariate distribution which is PUOD (NUOD) then S is PQD (NQD).

Proof :

If S is PUOD, then P{S1 > n1,S2 > n2} ≥ P{S1 > n1}P{S2 > n2}, and the following are all equivalent:

P{S1 > n1,S2 > n2} ≥ P{S1 > n1}P{S2 > n2}

P{S1 ≤ n1,S2 ≤ n2}−P{S1 ≤ n1}−P{S2 ≤ n2} + 1 ≥ (1−P{S1 ≤ n1})(1−P{S2 ≤ n2})

P{S1 ≤ n1,S2 ≤ n2} ≥ P{S1 ≤ n1})P{S2 ≤ n2}.
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Therefore, S is PLOD and hence, PQD. For NUOD and NQD, reverse the inequality. �

Corollary 3 s00 + s01 = s11, s00 + s02 = s22 and s00 ≥ (≤)s11s22 are sufficient conditions for S to be PQD

(NQD).

Proof :

Following the (⇐) portion of the proof of Theorem 12, (4.9) becomes, for any n1 ≤ n2,

P{S1 > n1,S2 > n2} = sn1
00 sn2−n1

11

≥ (≤)(s22s11)n1sn2−n1
11

= sn1
22 sn2

11

= P{S1 > n1}P{S2 > n2}.

This implies S is PUOD (NUOD) and by Lemma 3, PQD (NQD). �

4.3 Discrete Bivariate Marshall-Olkin Distributions

Recall that if S = (S1,S2) is a bivariate simple DPH with underlying Markov chain S = {S ,Σ,S, e1}, then,

S =



s00 s01 s02 s03

0 s11 0 s13

0 0 s22 s23

0 0 0 1


.

Lemma 4 (Discrete Bivariate Marshall-Olkin Distributions) S has a discrete Marshall-Olkin distri-

bution if and only if S has a bivariate geometric distribution.

Proof :

If S is a discrete bivariate Marshall-Olkin distribution it follows from Example 3 that s11 = s00 + s01 and

s22 = s00 + s02. By Theorem 11, S is a bivariate geometric distribution.

If S is a bivariate geometric distribution then, S1 and S2 are simple if and only if s11 = s00 + s01 and

s22 = s00 + s02. These equations are equivalent to s13 = s02 + s03 and s23 = s01 + s03. So,

S =



s00 s01 s02 s03

0 s00 + s01 0 s02 + s03

0 0 s00 + s02 s01 + s03

0 0 0 1


.
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S is identical in form to the one given in Example 3 for the discrete bivariate Marhsall-Olkin distribution

so S must be a discrete bivariate Marshall-Olkin distribution. �

It follows from Lemma 4 that the marginal distributions of a discrete bivariate Marhsall-Olkin distribution

are geometric, which is a discrete analog of the fact that the continuous Marshall-Olkin distribution has

exponential marginals.

Using formula (4.1) for the survival probabilities of a simple bivariate DPH and the relationships s11 =

s00 + s01 and s22 = s00 + s02 defining a bivariate discrete Marshall-Olkin distribution, we have:

P{S1 > n1,S2 > n2} =


sn1
00 sn2−n1

11 n2 ≥ n1

sn2
00 sn1−n2

22 n1 ≥ n2.

Theorem 13 (Orthant Comparisons) Let S∗ and S′ be bivariate discrete Marshall-Olkin distributions

with transition matrices

S′ =



s′00 s′01 s′02 s′03

0 s′11 0 s′13

0 0 s′22 s′23

0 0 0 1


and

S∗ =



s∗00 s∗01 s∗02 s∗03

0 s∗11 0 s∗13

0 0 s∗22 s∗23

0 0 0 1


,

respectively. Then P{S′1 > n1,S′2 > n2} ≥ P{S∗1 > n1,S∗2 > n2} if and only if s′00 ≥ s∗00, s′11 ≥ s∗11, and

s′22 ≥ s∗22.

Proof :

Suppose s′00 ≥ s∗00, s′11 ≥ s∗11, and s′22 ≥ s∗22. Then for every n2 ≥ n1 ≥ 0,(
s′00
s∗00

)n1

≥ 1 ≥
(

s∗11
s′11

)n2−n1

,

s′n1
00 s′n2−n1

11 ≥ s∗n1
00 s∗n2−n1

11

P{S′1 > n1,S′2 > n2} ≥ P{S∗1 > n1,S∗2 > n2}.

A parallel argument works for n1 ≥ n2 ≥ 0.
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If P{S′1 > n1,S′2 > n2} ≥ P{S∗1 > n1,S∗2 > n2}, then for every n2 ≥ n1,

s′n1
00 s′n2−n1

11 ≥ s∗n1
00 s∗n2−n1

11 .

This implies (
s′00
s∗00

)n1

≥
(

s∗11
s′11

)n2−n1

.

For n2 = n1 = 1,
s′00
s∗00

≥ 1

and

s′00 ≥ s∗00.

Taking n1 fixed and allowing n2 to be arbitrarily large, we see that

s∗11
s′11

≤ 1

to satisfy the inequality for all n2 > n1. This implies s′11 ≥ s∗11. A parallel argument for n1 ≥ n2 shows that

s′22 ≥ s∗22. �

Corollary 4 If S∗ and S′ have identical marginals, then P{S′1 > n1,S′2 > n2} ≥ P{S∗1 > n1,S∗2 > n2} if

and only if s′00 ≥ s∗00.

Proof :

If S∗ and S′ have identical marginals, s′11 = s∗11 and s′22 = s∗22. Therefore s′00 ≥ s∗00 is all that is needed to

satisfy the conditions of the theorem. �

4.4 Discrete Bivariate Freund Distributions

Let S = (S1,S2) be a bivariate simple DPH with underlying Markov chain S = {S ,Σ,S, e1}. Where

S =



s00 s01 s02 0

0 s11 0 s13

0 0 s22 s23

0 0 0 1


.

Then it is clear from Example 5 that S has a bivariate discrete Freund distribution.
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Lemma 5 S1 and S2 cannot be PUOD except when the distribution is degenerate in which case PUOD holds

trivially.

Proof :

Suppose S1 and S2 are positively dependent. Then ∀n1, n2,

P{S1 ≤ n1,S2 ≤ n2} ≥ P{S1 ≤ n1}P{S2 ≤ n2}

and in particular,

P{S1 = 1,S2 = 1} ≥ P{S1 = 1}P{S2 = 1}

but P{S1 = 1,S2 = 1} = 0, since there can be no simultaneous failure. The only way to satisfy this inequality

is if P{S1 = 1} = 0 or P{S2 = 1} = 0, but not both. Without loss of generality, suppose P{S2 = 1} = 0. So

s02 = 0 and P{S1 = n1,S2 = n2} = 0 if n1 > n2. Since s00 = s02 = 0 implies the distribution is degenerate

and therefore trivially independent, assume that s00 > 0. Then

P{S1 = 3,S2 = 2} = 0

� (s2
00s01)(s01s13)

= P{S1 = 3}P{S2 = 2}

(4.10)

so S1 and S2 cannot be positively dependent. �

Corollary 5 S1 and S2 cannot be independent.

Proof :

The proof is the same as above with the inequalities replaced by equality. �

Sufficient conditions for NUOD are given in Corollary 3, while the following example shows that bivariate

discrete Freund distributions need not be NUOD.

Example 9 Suppose S = (S1,S2) is a bivariate discrete Freund distribution with underlying Markov chain

S = {S ,Σ,S, e1}. Where

S =



.98 .01 .01 0

0 .01 0 .99

0 0 .01 .99

0 0 0 1


.
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Then

P{S1 > 1,S2 > 2} = s00(s00 + s01)

= .98(.98 + .01)

= .9702

> .9606

= (.98 + .01)(.982 + .01(.98 + .01))

= (s00 + s01)(s2
00 + s01(s00 + s11))

= P{S1 > 1}P{S2 > 2}.

4.5 Bivariate MDPH and Bivariate MPH Distributions

4.5.1 Relationship of Bivariate Simple MDPH Distributions to MPH distribu-

tions

Following Section 3.3, let S = (S1,S2) be a simple bivariate DPH distribution with underlying Markov chain

S = {S ,Σ,S, e1} where S = {s0, s1, s2, s3}, Σ1 = {s1, s3}, Σ2 = {s2, s3} and

S =



s00 s01 s02 s03

0 s11 0 s13

0 0 s22 s23

0 0 0 1


,

with sij ≥ 0, and e1 is a {1, 0}-vector with 1 in the first element and 0’s elsewhere.

As before, we assume s00 6= s11 and s00 6= s22, so

P{S1 > n1} = sn1
00 + s02

sn1
22 − sn1

00

s22 − s00
,

P{S2 > n2} = sn2
00 + s01

sn1
11 − sn1

00

s11 − s00

and, without loss of generality, taking n1 ≤ n2,

P{S1 > n1,S2 > n2} = sn1
00 [sn2−n1

00 + s01
sn2−n1
11 − sn2−n1

00

s11 − s00
].

Let T = (T1,T2) have an MPH distribution as described in (3.4) with the DPH random vector (S1,S2)

and exponential distribution of rate λ. Let {N(t), t ≥ 0} denote a Poisson process with rate λ. Then for
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0 < x < y,

P{T1 > x,T2 > y} =
∞∑

i=0

∞∑
j=0

P{S1 > i,S2 > i + j} ·P{N(x) = i}P{N(y − x) = j}

=
∞∑

i=0

∞∑
j=0

si
00(s

j
00 + s01

sj
11 − sj

00

s11 − s00
) · (λx)i

i!
e−λx · (λ(y − x))j

j!
· e−λ(y−x)

=
∞∑

i=0

si
00 ·

(λx)i

i!
e−λx

∞∑
j=0

(sj
00 + s01

sj
11 − sj

00

s11 − s00
) · (λ(y − x))j

j!
· e−λ(y−x)

= eλxs00e−λx · (eλ(y−x)s00 +
s01

s11 − s00
(eλ(y−x)s11 − eλ(y−x)s00)) · e−λ(y−x)

=
s01

s11 − s00
eλx(s00−s11)eλy(s11−1) + (1− s01

s11 − s00
)eλy(s00−1).

Following parallel steps for 0 < y < x,

P{T1 > x,T2 > y} =
s02

s22 − s00
eλy(s00−s22)eλx(s22−1) + (1− s02

s22 − s00
)eλx(s00−1),

P{T1 > x,T2 > x} = eλx(s00−1).

The marginals are given by,

P{T1 > x} =
∞∑

i=0

P{S1 > i} ·P{N(x) = i}

=
∞∑

i=0

(si
00 + s02

si
22 − si

00

s22 − s00
) · (λx)i

i!
e−λx

= (eλxs00 +
s02

s22 − s00
(eλxs22 − eλxs00)) · e−λx

=
s02

s22 − s00
eλx(s22−1) + (1− s02

s22 − s00
)eλx(s00−1),

and similarly,

P{T2 > y} =
s01

s11 − s00
eλy(s11−1) + (1− s01

s11 − s00
)eλy(s00−1).

4.5.2 Bivariate Marshall-Olkin Distributions

Suppose S has a discrete Marshall-Olkin distribution and T = (T1,T2) is a corresponding continuous phase-

type random vector associated with S.

Theorem 14 T has a continuous Marshall-Olkin distribution.
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Proof :

Recall that s00 + s01 = s11 and s00 + s02 = s22 so, s01
s11−s00

= s02
s22−s00

= 1. Simplifying the general formulas

given above:

P{T1 > x,T2 > y} =


e−λs01x−λ(1−s11)y x < y

e−λ(1−s00)x x = y

e−λs02y−λ(1−s22)x x > y

Both cases where x 6= y simplify to the form given when x = y.

With 1 − s00 = s01 + s02 + s03, 1 − s22 = s01 + s03, and 1 − s11 = s02 + s03 some algebra results in the

following simplification:

P{T1 > x,T2 > y} =


e−λs01x−λs02y−λs03y x < y

e−λs01x−λs02y−λs03y x = y

e−λs01x−λs02y−λs03x x > y

or,

P{T1 > x,T2 > y} = e−λs01x−λs02y−λs03 max{x,y}.

This is the survival function for a bivariate Marshall-Olkin distribution with parameters λ1 = λs01, λ2 = λs02,

and λ12 = λs03 ([15]). �

Corollary 6 If T is a continuous bivariate Marshall-Olkin distribution with parameters λ1, λ2, and λ12,

then there exists a discrete bivariate Marshall-Olkin distribution S with which (3.4) is satisfied.

Proof :

Let λ > λ1 +λ2 +λ12 with s01 = λ1
λ , s02 = λ2

λ , and s03 = λ12
λ . Taking s00 = 1−s01−s02−s03, s11 = s00 +s01,

and s22 = s00 + s02, then

S =



s00 s01 s02 s03

0 s11 0 1− s11

0 0 s22 1− s22

0 0 0 1


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is the transition matrix for a bivariate discrete Marshall-Olkin distribution S. Consider T̂, the MPH asso-

ciated with S by (3.4) with the exponential distribution with parameter λ. Then

P{T̂1 > x, T̂2 > y} = e−λs01x−λs02y−λs03 max{x,y}

= e−λ
λ1
λ x−λ

λ2
λ y−λ

λ12
λ max{x,y}

= e−λ1x−λ2y−λ12 max{x,y}

= P{T1 > x,T2 > y},

so T is a corresponding MPH random vector with S. �

Corollary 7 Let T be a bivariate Marshall-Olkin distribution with parameters λ1, λ2, and λ12. Furthermore,

let λ′ > λ∗ > λ1 + λ2 + λ12. If S′ and S∗ are two discrete Marshall-Olkin distributions associated with T by

λ′ and λ∗, respectively, then for every n1, n2 > 0, P{S′1 > n1,S′2 > n2} ≥ P{S∗1 > n1,S∗2 > n2}.

Proof :

The following statements are equivalent:

λ∗ < λ′

−λ∗(λ1 + λ2 + λ12) > −λ′(λ1 + λ2 + λ12)

λ∗λ′ − λ∗(λ1 + λ2 + λ12) > λ∗λ′ − λ′(λ1 + λ2 + λ12)

λ∗(λ′ − λ1 − λ2 − λ12) > λ′(λ∗ − λ1 − λ2 − λ12)

1− λ1

λ′
− λ2

λ′
− λ12

λ′
> 1− λ1

λ∗
− λ2

λ∗
− λ12

λ∗

s′00 > s∗00.

Parallel arguments demonstrate that s′11 > s∗11 and s′22 > s∗22, so by Theorem 13, P{S′1 > n1,S′2 > n2} ≥

P{S∗1 > n1,S∗2 > n2}. �

The relationship between continuous and discrete bivariate Marshall-Olkin distributions can be used to

characterize the dependency relationship of the two components.

Theorem 15 Any two Marshall-Olkin distributed random variables are PUOD. In the case of no simulta-

neous failure, they are independent.

Proof :

The marginal survival functions of T1 and T2 are given by:

P{T1 > x} = e−λx(1−s22)
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and

P{T2 > y} = e−λy(1−s11).

The following statements are all equivalent for x > y (a similar argument works for x < y):

s01 ≤ s01 + s03

s11 − s00 ≤ s23

s11 − s00 ≤ 1− s22

x(s11 − s00) ≤ x(1− s22)

x(s11 − s00) + y(1− s11) ≤ x(1− s22) + y(1− s11)

−λ(x(s11 − s00) + y(1− s11)) ≥ −λ(x(1− s22) + y(1− s11))

e−λ(x(s11−s00)+y(1−s11) ≥ e−λ(x(1−s22)+y(1−s11))

P{T1 > x,T2 > y} ≥ P{T1 > x}P{T2 > y}.

This implies that T1 and T2 are strictly PUOD and therefore PQD except when s03 = 0 (no simultaneous

failure can occur), in which case they are independent. �

In fact, it follows from (4.11) that for any (T1,T2) that has a Marshall-Olkin distribution,

T1 = min{E1, E12}, T2 = min{E2, E12},

where E1, E2, E12 are independent, and exponentially distributed with rates λ1, λ2, λ12 respectively. Thus,

by Theorem 7 (2) and (3), (T1,T2) is associated, and hence positively upper orthant dependent.

4.5.3 Bivariate Freund Distributions

Suppose S is a discrete Freund distribution and T = (T1,T2) is a continuous phase-type distribution asso-

ciated with S.

Theorem 16 T is a continuous Freund distribution.

Proof :

Using the formulas for the survival function derived for the general bivariate MDPH case we have,

P{T1 > x, T2 > y} =


s01

s11−s00
eλx(s00−s11)eλy(s11−1) + (1− s01

s11−s00
)eλy(s00−1) 0 < x < y

s02
s22−s00

eλy(s00−s22)eλx(s22−1) + (1− s02
s22−s00

)eλx(s00−1) 0 < y < x
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Let α′ = λ(1− s22), β′ = λ(1− s11), α = λs01, and β = λs02. Recall s00 + s01 + s02 = 1, so s00 = 1− α
λ −

β
λ .

Substituting and simplifying gives:

P{T1 > x,T2 > y} =


α

α+β−β′ e
−β′ye−(α+β−β′)x +

(
1− α

α+β−β′

)
e−y(α+β) 0 < x < y

β
α+β−α′ e

−α′xe−(α+β−α′)y +
(
1− β

α+β−α′

)
e−x(α+β) 0 < y < x

which is the survival function for a bivariate Freund distribution with parameters α, β, α′, and β′ ([6]). �

Corollary 8 If T is a continuous bivariate Freund distribution with parameters α, α′, β, and β′, then there

exists a corresponding discrete bivariate Freund distribution S with which T is associated.

Proof :

Let λ > max{α + β, α′, β′} and s11 = 1− β′

λ , s22 = 1− α′

λ , s01 = α
λ , s02 = β

λ , and s00 = 1− α
λ −

β
λ . Then

S =



s00 s01 s02 0

0 s11 0 1− s11

0 0 s22 1− s22

0 0 0 1


is the transition matrix for a bivariate discrete Freund distribution S. Consider T̂, the MPH associated with

S by a Poisson process with parameter λ. Following the work above, it is easy to see that T̂ and T have the

same distribution. �

A Class of NQD Bivariate MPH Distributions

The following results will show that the only NUOD bivariate simple MPH distributions are a class of Freund

distributions. Lemma 3 implies that this class must also be the only bivariate simple MPH distributions

that are NQD.

Let R(x, y) =
P{T1 > x}P{T2 > y}
P{T1 > x,T2 > y} . Clearly T is NUOD if and only if ∀x, y, R(x, y) ≥ 1.

Without loss of generality, assume 0 ≤ x ≤ y. Let A1 = s01
s11−s00

, A2 = s02
s22−s00

, and Bx = eλx(s00−s11),

then

P{T1 > x,T2 > y} = A1Bxeλy(s11−1) + (1−A1)eλy(s00−1),

P{T1 > x} = (1−A2)eλx(s00−1) + A2e
λx(s22−1),

P{T2 > y} = (1−A1)eλy(s00−1) + A1e
λy(s11−1),
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and

R(x, y) =

(
(1−A2)eλx(s00−1) + A2e

λx(s22−1)
) (

(1−A1)eλy(s00−1) + A1e
λy(s11−1)

)
A1Bxeλy(s11−1) + (1−A1)eλy(s00−1)

. (4.12)

Theorem 17 A necessary condition for T to be NUOD is s03 = 0.

Proof :

Consider R(x, x). After simplifying we have

R(x, x) = (1−A2)(1−A1)eλx(s00−1) + (1−A2)A1e
λx(s11−1)+

A2(1−A1)eλx(s22−1) + A1A2e
λx(s22+s11−s00−1),

R(0, 0) = 1, and dR
dx |x=0 = λ(s00 + s01 + s02 − 1). λ(s00 + s01 + s02 − 1) ≤ 0 with equality if and only if

s00 + s01 + s02 = 1, but s00 + s01 + s02 = 1 if and only if s03 = 0. Suppose s03 > 0, then dR
dx |x=0 < 0.

This implies that there exists some c > 0 such that R(c, c) < R(0, 0) = 1, but T is NUOD if and only if

R(x, y) ≥ 1 ∀x, y. Therefore, s03 > 0 implies that T is not NUOD. �

Theorem 18 Necessary conditions for T to be NUOD are 0 < s01
s11−s00

≤ 1, and 0 < s02
s22−s00

≤ 1.

Proof :

If s11 < s00 then lim
y→∞

R(x, y) = P{T1 > x} < 1, so there is an x and y such that R(x, y) < 1. This implies

that if s11 < s00, T is not NUOD. A parallel argument works for s22 and s00. Therefore s01
s11−s00

> 0 and

s02
s22−s00

> 0 are necessary conditions for T to be NUOD.

Consider

R(x, 1
λ ) = P{T2 > 1

λ} (1−A2)eλx(s00−1) + A2e
λx(s22−1)

A1Bxes11−1 + (1−A1)es00−1
.

∂R

∂x
|x=0 = P{T2 > 1

λ}λs01(1−A1)es00−1(es11−s00 − 1)
(A1es11−1 + (1−A1)es00−1)2

.

Since it has already been shown that s11 > s00 must be true for T to be NUOD, all factors except possibly

(1−A1) are positive. If A1 > 1, then ∂R
∂x |x=0 < 0. R(0, 1

λ ) = 1 so there is some c > 0 such that R(c, 1
λ ) < 1.

Therefore, A1 ≤ 1 is a necessary condition for T to be NUOD. The argument to show that A2 ≤ 1 is exactly

parallel to this one with x ≥ y (and the appropriate changes in R(x, y)). �

Theorem 19 s03 = 0, 0 < s01
s11−s00

≤ 1, and 0 < s02
s22−s00

≤ 1 are sufficient conditions for T to be NUOD.

Proof :

Assuming that 0 < s01
s11−s00

≤ 1 implies that s00 < s11, so 1−Bx > 0 and 1−A1 ≥ 0.
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It is straightforward to verify that

R(x, y) = P{T1 > x}
(

1 +
A1(1−Bx)

A1Bx + (1−A1)eλy(s00−s11)

)
.

Note that for A1 = 1, R(x, y) is constant with respect to y.

Assuming A1 < 1, after some simplification we have,

∂R

∂y
=

P{T1 > x}λs01(1−A1)(1−Bx)eλy(s00−s11)(
A1Bx + (1−A1)eλy(s00−s11)

)2 > 0.

That is, for fixed x and y ≥ x, R(x, y) is increasing in y.

So, for every x, y1, and y2 such that x ≤ y1 ≤ y2, 0 < s01
s11−s00

≤ 1 implies that R(x, y1) ≤ R(x, y2).

A parallel argument for 0 < s02
s22−s00

≤ 1 implies that for every x1, x2, and y such that y ≤ x1 ≤ x2

R(x1, y) ≤ R(x2, y). If it can be shown that for every x, R(x, x) ≥ 1 then this implies that for every x, y,

R(x, y) ≥ 1 and T is NUOD.

Recall that

R(x, x) = (1−A2)(1−A1)eλx(s00−1) + (1−A2)A1e
λx(s11−1)+

A2(1−A1)eλx(s22−1) + A1A2e
λx(s22+s11−s00−1),

R(0, 0) = 1, and if s03 = 0, dR
dx |x=0 = 0.

d2R

dx2
= λ2(s00 − 1)2(1−A2)(1−A1)eλx(s00−1) + λ2(s11 − 1)2(1−A2)A1e

λx(s11−1)

+ λ2(s22 − 1)2A2(1−A1)eλx(s22−1) + λ2(s22 + s11 − s00 − 1)2A1A2e
λx(s22+s11−s00−1),

Each term is positive, so R(x, x) is concave up with a slope of 0 at x = 0. This implies that R(x, x) is

increasing for x ≥ 0, and R(x, x) ≥ R(0, 0) = 1. Therefore T is NUOD. �

Theorem 19 also leads to the solution of the following open problem for Freund distributions. Consider

Example 5 again. The conditions in Theorem 19 can be expressed, in terms of the matrix of Example 5, as

follows.

1 > p1 ≥ p1|2 ≥ 0,

1 > p2 ≥ p2|1 ≥ 0.

Thus, if these inequalities hold, the corresponding bivariate Freund distribution is NUOD. This is reasonable

because if the probability that destroys component i (i = 1, 2) becomes smaller when the other component

fails first, then component i would be more likely to survive upon the failure of the other component, and

as such, two components are negatively dependent.
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Li showed that if

p1 ≤ p1|2, p2 ≤ p2|1,

then the Freund distribution is PUOD ([10]). Our result complements Li’s result and provides a complete

picture for dependence structure of the continuous Freund distributions.
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Chapter 5

Computation and Applications

In the first section of this chapter we provide a method for directly calculating probabilities for a general

class of conditions. Included in this class is the probability mass function. We also give an algorithm for

generating random vectors from a given MDPH distribution and extend this result to random vectors from a

given MPH distribution. In the second section we discuss two applications of MDPH distributions. The first

application considers a system subject to periodic inspections with component lifetimes that have a MPH

distribution. The component lifetimes in terms of the number of inspections have a MDPH distribution.

We consider examples where it is of interest to find the inspection interval length that provides the lowest

long-term cost given a distribution and a set of expenses. In the second application, we derive a formula for

finding the mean time to failure of a coherent reliability system whose component lifetimes have a MDPH

distribution.

5.1 Computation

5.1.1 Computing Probabilities

It may be useful to calculate directly the probability of a MDPH vector occurring in a region defined by

a set of conditions Ski ≤ ni, i = 1, 2, · · · , N1 and Ski > ni, i = N1 + 1, N1 + 2, · · · , N where the ki are

not necessarily unique. Although it is technically possible to calculate such probabilities using the survival

function, the following generalization of the method described in Theorem 1 provides a more convenient

approach to this class of regions.
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Theorem 20 Consider a set of conditions Ski
≤ ni, i = 1, 2, · · · , N1 and Ski

> ni, i = N1 + 1, N1 +

2, · · · , N . Let Γj =

 ⋂
i≤j;oi≤N1

Σkoi

⋂ ⋂
i>j;oi>N1

Σc
koi

. With IΓj
defined as in Theorem 1, we have:

P{Ski
≤ ni; i ≤ N1, Ski

> ni;N1 < i ≤ N} = σ ·Sno1 · IΓ1 ·
N∏

j=2

(
Snoj

−noj−1 · IΓj

)
· 1.

Proof :

The idea is the same as for Theorem 1. First note that

P{Ski
≤ ni; i ≤ N1, Ski

> ni;N1 < i ≤ N} = P{Sni ∈ Σki
; i ≤ N1, Sni ∈ Σc

ki
;N1 < i ≤ N}.

As in Theorem 1, Γj is constructed so that IΓj will restrict the Markov chain to those paths which satisfy

the constraints. �

Corollary 9 Conditions of the form Si = ni, Si ≥ ni, and Si < ni can be easily converted to the two

condition types used above. In particular, Si = ni is equivalent to (Si ≤ ni, Si > ni − 1), Si ≥ ni is

equivalent to Si > ni − 1, and Si < ni is equivalent to Si ≤ ni − 1.

We have implemented the computational method suggested by this theorem and corollary in the R dialect

of the S programming language [16]. The code is provided in the appendix.

5.1.2 Generating Random Vectors

It may be of interest to generate vectors with a particular MDPH distribution. The approach we have taken is

to simulate the underlying Markov chain while keeping track of the time of entry into the stochastically closed

classes. Given an m dimensional MDPH random vector S with underlying Markov chain S = {S ,Σ,S, σ}

where S = {s1, · · · , sN}, the algorithm is as follows:

1. Set n1 = · · · = nm = 0

2. Generate the initial state S0 = si where i is from a multinomial distribution with probabilities given

by σ

3. While Sn 6∈ S∆:

(a) Generate next state sj given current state si; Sn+1 = sj | Sn = si where j is from a multinomial

distribution with probabilities given by row i of S.
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(b) For each k such that sj ∈ Σc
k, increment nk by 1

4. n = (n1, · · · , nm) is an m dimensional random vector from the given MDPH distribution.

Example 10 (Estimating Higher Joint Moments of a Simple MDPH) Consider a simple bivariate

MDPH S, with underlying transition matrix:

S =



0.2 0.35 0.35 0.1

0 0.6 0 0.4

0 0 0.6 0.4

0 0 0 1


.

Note that the marginal probabilities for S1 are the same as for S2, so it suffices to look only at E[Sn
1Sm

2 ]

where n ≤ m. Using the moment generating function derived in Chapter 4, we calculated mixed order

moments for S directly. We also used simulation runs of 500000 repeated for each case to estimate the

moments and the standard error of the estimate.

Calculated Estimated

E[S2] 2.343 2.345± 0.005

E[S2
2] 8.984 8.980± 0.049

E[S1S2] 4.609 4.601± 0.012

E[S1S2
2] 15.215 15.228± 0.093

E[S2
1S

2
2] 41.035 40.918± 0.400

To simulate an MPH T we generate a vector from the underlying MDPH. If N is the maximum value of

this vector, then generate (E1, E2, · · · , EN ) from an exponential distribution with parameter λ. The value

of Ti =
∑ni

j=1 Ei, i = 1, . . . ,m.

5.2 Applications

5.2.1 Periodic Inspections

Consider an m component system with component lifetimes having a MPH distribution T = (T1, · · · ,Tm).

Suppose T has an underlying MDPH S (with underlying Markov chain S = {S ,Σ,S, σ}) associated by

parameter λ and the system is subject to periodic inspections every i time units. It is assumed that failure

of a component in the system can only be known by inspection. S∗ = (S∗1, · · · ,S∗m) can be considered the

discrete distribution of failure times in terms of the number of inspections until failure is observed.
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Theorem 21 S∗ has a MDPH distribution with underlying Markov chain S = {S ,Σ,S∗, σ}, where S∗ =

e−λieλiS.

Proof :

For inspection intervals of fixed length i, this follows immediately from Corollary 2 by taking t = i. �

Example 11 (Bivariate Simple MPH with Periodic Inspection) Let T be a bivariate simple MPH

distribution with underlying MDPH S associated to T by parameter λ. If S = {S ,Σ,S, σ} is the underlying

Markov chain for S, it is straightforward to verify that, for inspection interval i, the MDPH S∗ induced by

the periodic inspection will have the following transition matrix:

S∗ =



s∗00 s∗01 s∗02 1− s∗00 − s∗01 − s∗02

0 s∗11 0 1− s∗11

0 0 s∗22 1− s∗22

0 0 0 1



=



eλi(s00−1) s01
s11−s00

(eλi(s11−1) − eλi(s00−1)) s02
s22−s00

(eλi(s22−1) − eλi(s00−1)) 1− s∗00 − s∗01 − s∗02

0 eλi(s11−1) 0 1− s∗11

0 0 eλi(s22−1) 1− s∗22

0 0 0 1



=



eλi(s00−1) s01
s11−s00

(s∗11 − s∗00) s02
s22−s00

(s∗22 − s∗00) 1− s∗00 − s∗01 − s∗02

0 eλi(s11−1) 0 1− s∗11

0 0 eλi(s22−1) 1− s∗22

0 0 0 1


.

Example 12 (Bivariate Marshall-Olkin with Periodic Inspection) If T is a Marshall-Olkin distri-

bution then s00 + s01 = s11 and s00 + s02 = s22 so

S∗ =



eλi(s00−1) s∗11 − s∗00 s∗22 − s∗00 1 + s∗00 − s∗11 − s∗22

0 eλi(s11−1) 0 1− s∗11

0 0 eλi(s22−1) 1− s∗22

0 0 0 1


.

Therefore s∗00 + s∗01 = s∗11 and s∗00 + s∗02 = s∗22 which means that S∗ is a Marshall-Olkin distribution also.

This implies that if a certain system has a bivariate Marshall-Olkin distribution, the distribution of failures

under a periodic inspection regime will have a bivariate discrete Marshall-Olkin distribution. Furthermore,

it follows from Theorem 13 that if S∗1 is induced by i1 and S∗2 is induced by i2, with i1 < i2, then S∗1 ≥uo S∗2.
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Example 13 (Optimization of Inspection Interval for Given Costs) Suppose that units consisting

of a two component system with component lifetimes having a Marshall-Olkin distribution are subject to

replacement upon failure of at least one component. If an inspection finds that one component has failed,

replacement of the unit can occur with minimal system downtime. The cost associated with this replacement

will be Cr. If an inspection finds that both components have failed, the system has failed and downtime is

incurred along with an associated cost. As a simplification, we assume that the cost due to the downtime

is proportional to the length of the inspection interval. Adding the cost due to downtime with cost of

replacement we have the cost associated with an observed failure of both components: i ·Cdt + Cr. Finally,

each inspection has a certain associated cost given by Cin. The lifetime cost of each unit is given by:

C(S∗1,S
∗
2) =


Cin min{S∗1,S∗2}+ Cr S∗1 6= S∗2

Cin min{S∗1,S∗2}+ i · Cdt + Cr S∗1 = S∗2

Using the joint pmf given in Section 4.2, it is possible to calculate the expected cost as a function of the

given costs and the parameters of the transition matrix S∗

E[C] =
(

1
1− s∗00

)
Cin +

s∗03

1− s∗00
(i · Cdt + Cr) +

(
1− s∗03

1− s∗00

)
Cr

Making use of the fact that the distribution is Marshall-Olkin, rearranging and substituting to put it in

terms of the original underlying MDPH, λ, and i results in:

E[C] =
(

1
1− eλi(s00−1)

)
Cin + Cr + i · Cdt

1 + eλi(s00−1) − eλi(s11−1) − eλi(s22−1)

1− eλi(s00−1)
.

For a given distribution and costs, it may be of interest to find the inspection interval that minimizes the

expected per unit cost. Since λ is the expected number of shock events for a fixed unit time interval, without

loss of generality, time units can be chosen such that λ = 1. The costs will also be scaled relative to Cin so

that Cin = 1. Taking s00 = 9
10 , s11 = s22 = 47

50 , Cr = 10, and Cdt = 10 gives the expected cost of a unit as a

function of i.

E[C] =
1

1− e
−i
10

+ 10 + 10i
1 + e

−i
10 − 2e

−3i
50

1− e
−i
10

.

Using a computer algebra system to find the inspection interval period that gives the minimum cost per unit

gives 1.86 time units as the approximate optimal inspection interval length.

Clearly not all units will have the same lifespan, so it may be that a question of greater interest is the

overall average cost per time of operating many units in succession. In this case it is necessary to know the
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expected lifetime of a unit. For this example, the lifetime, L, of a particular unit will be considered to end

when it is replaced. So,

L(S∗1,S
∗
2) = imin{S∗1,S∗2}

and the expected lifetime is

E[L] =
i

1− e
−i
10

Finally,

E[C]
E[L]

=
11− 10e

−i
10 + 10i

(
1 + e

−i
10 − 2e

−3i
50

)
i

.

Using a computer algebra system to minimize this function with respect to i indicates that the optimum

inspection interval to minimize the average cost per unit of time is approximately 2.20 time units.

Example 14 Consider a system with two components which is subject to damaging shocks. Each component

may exist in one of three states after receiving a shock; no damage, minor damage, or failed. The system fails

if both components have failed or experienced shocks which resulted in minor damage. The state space of

the system can be described by S = {sa, sb, sc, s1, s2, s3} where sa corresponds to no damage, sb corresponds

to minor damage to the first component and no damage to the second component, sc corresponds to minor

damage to the second component with no damage to the first component, s1 and s2 correspond to failure of

the first and second components respectively, and s3 corresponds to the failure of the system. To simplify

the example, suppose that the probability of a certain type of shock damage does not depend on the state

of the system, but two minor damage shocks to the same component result in the failure of that component
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and the two components have the same distribution of failures; then

S =



saa sab sac sa1 sa2 sa3

0 sbb 0 sb1 0 sb3

0 0 scc 0 sc2 sc3

0 0 0 s11 0 s13

0 0 0 0 s22 s23

0 0 0 0 0 1



=



saa sab sab sa1 sa1 1− (saa + 2sab + 2sa1)

0 saa 0 sab + sa1 0 1− (saa + sab + sa1)

0 0 saa 0 sab + sa1 1− (saa + sab + sa1)

0 0 0 saa + sab + sa1 0 1− (saa + sab + sa1)

0 0 0 0 saa + sab + sa1 1− (saa + sab + sa1)

0 0 0 0 0 1


and, with a simplifying reparameterization

=



saa sab sab s11 − saa − sab s11 − saa − sab 1 + saa − 2s11

0 saa 0 s11 − saa 0 1− s11

0 0 saa 0 s11 − saa 1− s11

0 0 0 s11 0 1− s11

0 0 0 0 s11 1− s11

0 0 0 0 0 1


.

Further, suppose the shocks arrive as a Poisson process with parameter λ and the system is to be subject

to periodic inspection every i time units with failures only observed upon inspection. The transition matrix

for the MDPH distribution of failures observed at inspection is given by:

S∗ =



s∗aa λisabs
∗
aa λisabs

∗
aa s∗11 − s∗ab − s∗aa s∗11 − s∗ab − s∗aa 1 + s∗aa − 2s∗11

0 s∗aa 0 s∗11 − s∗aa 0 1− s∗11

0 0 s∗aa 0 s∗11 − s∗aa 1− s∗11

0 0 0 s∗11 0 1− s∗11

0 0 0 0 s∗11 1− s∗11

0 0 0 0 0 1


,
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where s∗aa = eλi(saa−1), and s∗11 = eλi(saa+sab+sa1−1).

Suppose that a slightly modified version of the system is available with identical characteristics except

that a partially damaged component can be repaired for no additional cost as soon as it is observed. This

implies that the transitions out of sb and sc are the same as those out of sa. The corresponding change to

the transition matrix results in:

s∗aa λisabs
∗
aa λisabs

∗
aa s∗11 − s∗ab − s∗aa s∗11 − s∗ab − s∗aa 1 + s∗aa − 2s∗11

s∗aa λisabs
∗
aa λisabs

∗
aa s∗11 − s∗ab − s∗aa s∗11 − s∗ab − s∗aa 1 + s∗aa − 2s∗11

s∗aa λisabs
∗
aa λisabs

∗
aa s∗11 − s∗ab − s∗aa s∗11 − s∗ab − s∗aa 1 + s∗aa − 2s∗11

0 0 0 s∗11 0 1− s∗11

0 0 0 0 s∗11 1− s∗11

0 0 0 0 0 1


,

which reduces to 

s∗aa + 2λisabs
∗
aa s∗11 − s∗ab − s∗aa s∗11 − s∗ab − s∗aa 1 + s∗aa − 2s∗11

0 s∗11 0 1− s∗11

0 0 s∗11 1− s∗11

0 0 0 1


.

A natural question is which version of the system provides the cheapest long term cost. Suppose that

a system is replaced at the first observed failure of a component and system downtime occurs if both

components have failed with an associated cost similar to the previous example. The total cost of a unit is

given by

C(S∗1,S
∗
2) =


Cin min{S∗1,S∗2}+ Cr S∗1 6= S∗2

Cin min{S∗1,S∗2}+ i · Cdt + Cr S∗1 = S∗2

where Cr depends on whether the system is repairable or not.

Since the repairable system has a simple lifetime distribution, the expected cost and expected lifetime

are similar to the previous example with (taking λ = 1)

E[C] =
(

1
1− s∗00

)
Cin +

s∗03

1− s∗00
(i · Cdt + Cr) +

(
1− s∗03

1− s∗00

)
Cr

=
Cin

1− (s∗aa + 2isabs∗aa)
+ i · Cdt

1 + s∗aa − 2s∗11

1− (s∗aa + 2isabs∗aa)
+ Cr.
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Likewise, the lifetime and expected lifetime of a repairable system are

L(S∗1,S
∗
2) = imin{S∗1,S∗2}

and

E[L] =
i

1− s∗00

=
i

1− (s∗aa + 2isabs∗aa)
.

So
E[C]
E[L]

=
Cin + i · Cdt (1 + s∗aa − 2s∗11) + Cr (1− (s∗aa + 2isabs

∗
aa))

i
.

Taking

S =



9
10

3
100

3
100

3
200

3
200

1
100

0 9
10 0 9

200 0 11
200

0 0 9
10 0 9

200
11
200

0 0 0 189
200 0 11

200

0 0 0 0 189
200

11
200

0 0 0 0 0 1


,

and Cin = 1, Cdt = 10, and Cr = 100 for the repairable system, the minimum average cost per unit time

occurs with inspection internal i ≈ 2.13 and the average cost per unit time approximately 4.92.

Using the same parameters as above with the exception of a lower replacement cost for the non-repairable

system of Cr = 50. The transition matrix for this MDPH with inspection interval i is

e−
i
10 3i

100e−
i
10 3i

100e−
i
10 e−

11i
200 − 3i

100e−
i
10 − e−

i
10 e−

11i
200 − 3i

100e−
i
10 − e−

i
10 1− 2e−

11i
200 + e−

i
10

0 e−
i
10 0 e−

11i
200 − e

i
10 0 1− e−

11i
200

0 0 e−
i
10 0 e−

11i
200 − e

i
10 1− e−

11i
200

0 0 0 e−
11i
200 0 1− e−

11i
200

0 0 0 0 e−
11i
200 1− e−

11i
200

0 0 0 0 0 1


.

This system is not as straightforward to analyze in closed form, so we ran simulations to estimate the

optimum inspection period and the average cost per unit time. First several simulations were run to find

a range of values for inspection period that give the lowest expected cost per unit time. After finding the

optimum period to be between 2.0 and 3.0, we performed simulation runs of two million systems for the
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eleven inspection intervals i = 2 + .1j, j = 0, · · · , 10. We estimated average cost per unit time to be to be

approximately 3.9. Therefore, at the given prices the non-repairable system is cheaper to own and operate

than the repairable system.

5.2.2 Coherent Reliability Systems

Many realistic engineering applications can be described using coherent systems ([3] 1981). In this section,

we show that any coherent system with components whose lifetime vector is distributed MDPH has a lifetime

that is distributed DPH. We also obtain an explicit expression for the reliability of coherent systems with

dependent components.

Consider a system comprising m components. We assign a binary variable xi to component i:

xi =

 1 if component i is functioning

0 if component i has failed.

Similarly, the binary variable Φ indicates the state of the system:

Φ =

 1 if the system is functioning

0 if the system has failed.

We assume that

Φ = Φ(x),

where x = (x1, x2, . . . , xm). That is, the state of the system is completely determined by the states of the

components. We refer to the function Φ(x) as the structure function of the system.

Definition 12 A system is said to be coherent if following conditions hold.

1. The structure function Φ is non-decreasing in each argument.

2. Each component is relevant, i.e., there exists at least one vector (·i,x) such that Φ(1i,x) = 1 and

Φ(0i,x) = 0.

Example 15 A system that is functioning if and only if each component is functioning is called a series

system. The structure function for this system is given by

Φ(x) =
m∏

i=1

xi.
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A system that is functioning if and only if at least one component is functioning is called a parallel

system. The structure function for this system is given by

Φ(x) = 1−
m∏

i=1

(1− xi).

In general, a system that is functioning if and only if at least k out of n components are functioning is

called a k-out-of-n system. The structure function for this system is given by

Φ(x) =

 1 if
∑m

i=1 xi ≥ k

0 if
∑m

i=1 xi < k.

A system that is functioning if and only if at least k consecutive components are functioning is called a

consecutive k-out-of-n system. The structure function for this system is given by

Φ(x) =

 1 if there exists a l such that
∑l+k

i=l+1 xi ≥ k

0 otherwise.

All of these systems are coherent systems.

Let SΦ be a system with m components and structure function Φ. Suppose (S1, . . . ,Sm) is a random vector

of component lifetimes that has has a MDPH distribution with underlying Markov chain S = {S ,Σ,S, σ}

= {Sn, n ≥ 0}. Define

Xn
i = IΣc

i
(Sn), i = 1, . . . ,m,

where IA denotes the indicator function of the set A. The reliability of SΦ at time n is given by

RΦ(n) = P{Φ(Xn
1 , . . . , Xn

m) = 1}.

Let τΦ(S1, . . . ,Sm) be the lifetime of the system SΦ. Then τΦ is called the life function associated with

the structure function Φ. It follows that

RΦ(n) = P{Φ(Xn
1 , . . . , Xn

m) = 1} = P{τΦ(S1, . . . ,Sm) ≥ n}.

The system mean time to failure is given by E[τΦ(S1, . . . ,Sm)]. The following result provides a useful tool

for calculating the reliability and mean time to failure of coherent systems.

Theorem 22 Let SΦ1 , · · · ,SΦk
be coherent systems each having identically MDPH distributed component

lifetime vectors S = (S1, . . . ,Sm). If τ1, . . . , τk are the life functions associated with structure functions

Φ1, . . . ,Φk, respectively, then (τ1(S), . . . , τk(S)) is a k-dimensional MDPH random vector.
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Proof :

Let S = {S ,Σ,S, σ} = {Sn, n ≥ 0} be the underlying Markov chain for S. Define

Λj = {s | Φj(IΣc
1
(s), . . . , IΣc

m
(s)) = 0}, j = 1, . . . , k.

Since Σ1, . . . ,Σm are all stochastically closed and Φ is non-decreasing in each argument, the sets Λ1, . . . ,Λk

are k stochastically closed subsets of S for the same Markov chain {Sn, n ≥ 0}, and

τj(S) = min{n | Sn ∈ Λj}, j = 1, . . . , k.

Thus, (τ1(S), . . . , τk(S)) is a k-dimensional MDPH random vector. �

Corollary 10 Let SΦ be a coherent system with m components having lifetime vector (S1, . . . ,Sm) with a

MDPH distribution with underlying Markov chain S = {S ,Σ,S, σ}. If τΦ is the life function associated with

the structure function Φ, then τΦ(S1, . . . ,Sm) has a univariate DPH distribution with underlying Markov

chain {S, Λ,S, σ}, where Λ = {s | Φ(IΣc
1
(s), . . . , IΣc

m
(s)) = 0} ⊆ S.

Thus the reliability of the coherent system SΦ with component lifetimes (S1, . . . ,Sm) at time n is given by

RΦ(n) = σSnIS−Λ1.

The mean time to failure of the coherent system SΦ is given by

E[τΦ(S1, . . . ,Sm)] = σ(I −S)−1IS−Λ1.

For a given coherent system with structure function Φ and a component lifetime vector S that has a MDPH

distribution, the reliability and mean time to failure can be easily calculated using these formulas. This is

a substantial improvement over the formulas used in engineering applications where only the independent

case has been considered.
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Appendix A

Computer Code

A.1 MDPH Data Structures

Each MDPH is represented as a list with four elements; the transition matrix, dimension, absorbing classes

(a set of logical indicator vectors), and the initial probability vector.

A.1.1 Bivariate MDPH Distribution

mdph2d<-list(trmat=c(),dim=NA, classes=c(), init=c())

mdph2d$trmat<-matrix(c(

c(0.2, 0.30, 0.45, 0.05),

c( 0 , 0.35, 0 , 0.65),

c( 0 , 0 , 0.40, 0.60),

c( 0 , 0 , 0 , 1 )

), nrow=4, ncol=4, byrow=T)

mdph2d$dim<-2

mdph2d$init<-matrix(c(1,0,0,0), nrow=1, ncol=4, byrow=T)

mdph2d$classes<-array(c(F,T, F, T, F,F,T,T), dim=c(4,2))

A.1.2 Trivariate MDPH Distribution

mdph3d<-list(trmat=c(),dim=NA, classes=c(), init=c())
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mdph3d$trmat<-matrix(c(

c(0.15, 0.05, 0.30, 0.05, 0.10, 0.20, 0.10, 0.05),

c( 0 , 0.30, 0 , 0.25, 0 , 0.20, 0 , 0.25),

c( 0, 0 , 0.25, 0.25, 0 , 0 , 0.25, 0.25),

c( 0 , 0 , 0 , 0.75, 0 , 0 , 0 , 0.25),

c( 0 , 0 , 0 , 0 , 0.15, 0.25, 0.15, 0.45),

c( 0 , 0 , 0 , 0 , 0 , 0.75, 0 , 0.25),

c( 0 , 0 , 0 , 0 , 0 , 0 , 0.40, 0.60),

c( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ),

),

nrow=8, ncol=8, byrow=T)

mdph3d$dim<-3

mdph3d$init<-matrix(c(1,0,0,0,0,0,0,0), nrow=1, ncol=8, byrow=T)

mdph3d$classes<-array(c(

c(F,T,F,T,F,T,F,T),

c(F,F,T,T,F,F,T,T),

c(F,F,F,F,T,T,T,T)

),

dim=c(8,3))

A.2 Functions

A.2.1 MDPH Probabilities

This function implements the ideas in Theorem 20 to calculate the probability of a MDPH being in a region

defined by a given set of conditions.

# mdph.prob(distribution, event.times, conditions)

# distribution: list with components for MDPH

# event.times: the n’s for the conditions in order of variables

# cond: The conditions (<, <=, =, >=, >) associated with event.times
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mdph.prob<-function(distribution=NA, variables=c(), event.times=c(), cond=c("")) {

# Verify that transition matrix is valid

if(length(which(rowSums(distribution$trmat)!=1))) {

return("Error! Rows of Transition Matrix Do Not Sum to 1")

}

# Verify validity of conditions

if(length(which(cond!="<" & cond!="<=" & cond!=">=" & cond!="=" & cond!=">"))) {

return("Error! Invalid Condition")

}

# Verify validity of event.times

if(length(which(event.times<0))) { return("Error! Negative Event Time") }

# Fix conditions and event.times so all conditions are <= or >

# <n becomes <= n-1

# >=n becomes > n-1

# =n becomes >n-1 & <= n

j=1

orig.cond=cond

new.cond=c()

new.variables=c()

new.event.times=c()

for(i in 1:length(cond)) {

if(cond[i] == "<") {cond[i]<-"<="; event.times[i]<-event.times[i]-1;}

if(cond[i] == ">=") {cond[i]<-">"; event.times[i]<-event.times[i]-1;}

if(cond[i] == "=") {

cond[i]<-"<="; event.times[i]=event.times[i];

new.variables[j]=variables[i]

new.cond[j]=">";

new.event.times[j] <- event.times[i]-1;

j<-j+1

}
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}

if(j>1) {

cond<-c(cond,new.cond)

event.times<-c(event.times, new.event.times)

variables<-c(variables, new.variables)

}

# <=n becomes < n for purposes of constructing diagonal

for(i in 1:length(cond)) { if(cond[i]=="<=") cond[i]<-"<"}

# Order n’s

order.times<-rank(event.times)

# Loop over Product

# Initialize loop variables

temp.dist<-distribution$init

N.current<-0

for(i in unique(sort(order.times))) {

N.old<-N.current

# Find the event time

N.current<-unique(event.times[order.times==i])

# Multiply to event

temp.dist<-temp.dist %*% matPower(distribution$trmat,N.current-N.old)

# Build diagonal and multiply

temp.dist<-temp.dist %*% build_diag(N.current, event.times, cond, variables,

distribution$dim, distribution$classes)

}

return(sum(temp.dist))

}
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A.2.2 Construct Diagonal Matrix

This function constructs the diagonal matrix IΓi
from Theorem 20

# N: time of the current event

# event.times: the n’s for the conditions in order of variables

# cond: conditions (<, <=, =, >=, >) associated with event.times

# variables: variables associated with conditions and event.times

# dim: dimension of MDPH distribution of interest

# classvectors: indicator vectors for the absorbing sets in the MDPH distribution

build_diag<-function(N=c(),event.times=c(), cond=c(""), variables=c(), dim=c(),

classvectors=NA)

{

#Construct logical vector by &’ing all conditions with current event time

cond.vect<-sapply(N, paste, cond, event.times)

truth.vect<-sapply(cond.vect, function(x) eval(parse(text=x)), USE.NAMES=F)

#Construct diagonal vector based on which conditions are satisfied

diagonal<-c(rep(T,length(classvectors[,1])))

for ( i in 1:length(cond)) {

if ( !truth.vect[i] ) {

if(cond[i]=="<") {

diagonal<-diagonal&classvectors[,variables[i]]

}else {

diagonal<-diagonal&!classvectors[,variables[i]]

}

}

}

return(diag(diagonal))

}
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A.2.3 Generate MDPH Random Vector

This function generates a random vector from a given MDPH distribution using the algorithm given in

Section 5.1.2.

mdph.randgen<- function(distribution=NA) {

# Initialize n vector to 0

n<-c(rep(0,distribution$dim))

# Sample from initial distribution multinomial

i<-sample(length(distribution$init), 1, prob=distribution$init)

n[!distribution$classes[i,]]<-n[!distribution$classes[i,]]+1

# Loop until current value is in Sigma_delta

while (i!=length(distribution$init)) {

# Use value from previous sample to choose row for current sample

i<-sample(length(distribution$init), 1, prob=distribution$trmat[i,])

# Unless value of current sample is in Sigma_i add n_i<-n_i+1

n[!distribution$classes[i,]]<-n[!distribution$classes[i,]]+1

}

mdphrv<-n

return(mdphrv)

}

A.2.4 Generate MPH Random Vector

This function generates a random vector from an MPH vector given an underlying MDPH distribution and

the rate parameter (λ) associating them.

mph.randgen<-function(distribution=NA, rate=1) {

discrete.rv<-mdph.randgen(distribution)$n

exp.rv<-rexp(max(discrete.rv), rate=rate)

mph.rv<-sapply(discrete.rv, function(i) sum(exp.rv[1:i]))

return(mph.rv)

}
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A.3 Examples

A.3.1 Estimating Higher Joint Moments

This function is used in Example 10 to estimate the higher joint moments.

# distribution: list with elements of MDPH distribution

# order: A vector of orders for each variable

# runs: number of runs for Monte Carlo estimate of moment

mdph.moment.est<-function(distribution=NA, order=c(), runs=1000) {

if ( length(order)!=distribution$dim) { print("Error! Order vector not correct size") }

generatedmoments<-rep(0, runs)

for( i in 1:runs) {

rv<-mdph.randgen(distribution)

generatedmoments[i]<-prod(rv^order)

}

return(c(mean(generatedmoments), sd(generatedmoments)/sqrt(runs)))

}

A.3.2 Simulation

The following code was used to get Monte Carlo estimates for the long run average cost per unit time of the

non-repairable system in Example 14.

# Define S* the bivariate inspection interval derived MDPH

mdphStar<-list(trmat=c(),dim=NA, classes=c(), init=c())

mdphStar$trmat<-build_trmat(1)

mdphStar$dim<-2

mdphStar$init<-matrix(c(1,0,0,0,0,0), nrow=1, ncol=6, byrow=T)

mdphStar$classes<-array(c(F,F,F,T,F,T, F,F,F,F,T,T), dim=c(6,2))

# Function to build the transition matrix for a given inspection interval length

# The rate parameter lambda is assumed to be 1.
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build_trmatstar<-function(i=1) {

saa=exp(-i/10)

sbb=exp(-i/10)

scc=exp(-i/10)

s11=exp(-11*i/200)

s22=exp(-11*i/200)

sab=(3/100)*i*exp(-i/10)

sac=(3/100)*i*exp(-i/10)

sa1=exp(-i*11/200) - exp(-i/10) * (3*i/100 + 1)

sa2=exp(-i*11/200) - exp(-i/10) * (3*i/100 + 1)

sb1=exp(-i*11/200) - exp(-i/10)

sc2=exp(-i*11/200) - exp(-i/10)

matstar<-matrix(c(

c(saa, sab, sac, sa1, sa2, 1-(saa+sab+sac+sa1+sa2)),

c(0, sbb, 0, sb1, 0, 1-(sbb+sb1) ),

c(0, 0, scc, 0, sc2, 1-(scc+sc2) ),

c( 0, 0, 0, s11, 0, 1-s11 ),

c( 0, 0, 0, 0, s22, 1-s22 ),

c( 0, 0, 0, 0, 0, 1 )

), nrow=6, ncol=6, byrow=T)

return(matstar);

}

# Define Cost Parameters

Ci<-1; Cr<-50; Cdt<-10;

# Set the number of units to simulate

runs<-2000000

# Values of inspection interval to simulate

intvalues<-seq(2.0,3, by=.1)

# Initialize vector where average costs will be saved for each interval length

avecost<-c()
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# Loop over Interval lengths

for (interval in intvalues) {

# Reset cost and time totals

cost<-0

time<-0

# Build transition matrix for current interval length

mdphStar$trmat<-build_trmatstar(interval)

# Simulation loop

for(j in 1:runs) {

rv<-mdph.randgen(mdphStar)

if( rv[2]==rv[1] ) {

cost<-cost+ Ci*min(rv) + interval*Cdt + Cr

}else{

cost<-cost+ Ci*min(rv) + Cr

}

time<- time + interval*min(rv)

}

# Average cost estimate is total cost of all units over total lifetime of all units

avecost<-c(avecost, cost/time)

}

# Plot estimated average cost for each interval length

x11()

plot(intvalues,avecost, xlim=c(min(intvalues),max(intvalues)),

ylim=c(min(avecost)-.05,max(avecost)+.05),

col="black", type="p")
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