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Introduction 
 

The Kalamazoo River drains an approximately 2000-square-mile watershed including nearly 400 miles of 

tributaries in Southwest Michigan.  The lower approximately 80 miles of the river are part of the Allied 

Paper, Inc./Portage Creek/Kalamazoo River Superfund Site.  Portage Creek is a tributary joining the 

Kalamazoo River at Kalamazoo, Michigan, the lower three miles of which are also included in the Site.  

The presence of polychlorinated biphenyls (PCB) was first reported in the Kalamazoo River and biota of 

the river in 1971.   This consequently resulted in consumption advisories for fish from the Kalamazoo 

River and Portage Creek.  Several subsequent studies have documented the presence of PCB within the 

surface water, sediments, floodplain soil, and biota of both the Kalamazoo River and Portage Creek, as well 

as in landfills adjacent to both surface water bodies.   In an effort to monitor human-health and ecological 

risk on the river system, samples of carp and smallmouth bass were collected at several sites within the 

Kalamazoo River and Portage Creek.  Among these sites, the greatest sampling effort occurred at Plainwell 

Impoundment and Lake Allegan, the most upstream- and downstream-impoundments, respectively, within 

the superfund site.   

 
Assessment of the efficacy of remedial alternatives on the Kalamazoo River system requires evaluation of 

future risks to human and ecological health, and quantification of uncertainty in those predictions.   Risks 

result from contact between ecological and human receptors that are of sufficient duration and intensity to 

elicit adverse effects (EPA, 1992).  In this region, human health risks from chlorinated organic compounds 

such as PCB are primarily associated with ingestion of contaminated fish tissue (Birmingham et al., 1989; 

Newhook et al., 1988; Fitzgerald et al., 1996).  Quantification of human health risks requires prediction of 

future fish-tissue PCB concentrations and quantification of uncertainty in those predictions.   

 

Temporal trends of the mean or median PCB concentration in fish tissue are typically nonlinear and often 

modeled as a first order decay process.  Stow et al. (1999) pointed out that the first order assumption 

requires that concentrations decay to zero, thereby precluding the possibility that contaminant 

concentrations may ultimately reach some steady state nonzero equilibrium or that decay rates may vary 

temporally.  In an effort to correct this weakness, they considered two models for median PCB 

concentration in fish tissue; a first order decay model with nonzero asymptote (NZA) and a mixed order 

model (MO).    
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Following Stow, et al. (1999) we use a mixed-order model for the decay rate of PCB concentrations in fish 

tissue samples taken from the Kalamazoo River.  Although this model offers more flexibility than first 



order decay, it comes at a statistical cost.  The most straightforward methods for prediction and 

quantification of uncertainty cannot be applied to these models because neither can be transformed into a 

linear model and analyzed (Neter et al., 1996), nor are they in the class of generalized linear models 

(McCullagh and Nelder, 1989) for which a significant amount of theory has been developed.  Stow, et al. 

(1999) used non-linear least squares methods to fit the model to their data, but we found this method to be 

inadequate for quantifying the uncertainty of our predictions because there was no effective way to 

generate confidence limits. In an effort to avoid these difficulties, we used profile likelihood methods 

(Venzon and Moolgavkar, 1988) and performed simulations to evaluate the robustness of these methods. 

 
Methods 
 
Carp and smallmouth bass fillets were collected at Plainwell Impoundment and Lake Allegan from 1983 to 

1999 and weight, length, lipid content, and total PCB concentration were measured.   PCB concentration in 

fish tissue is often associated with lipid content and length or weight, so we investigated the 

appropriateness of adjusting tissue PCB concentrations for covariation with lipid, length, and/or weight.  

Weight was highly correlated with length and added almost nothing to the fit when included in the presence 

of length, so we excluded it from models to avoid problems with multicolinearity.  For this reason, we will 

discuss only lipid and length.   

 

We assumed a model of the form: 

),1()()( σβ LNtMOetPCB X ⋅⋅= ⋅ , 

β⋅X  is a linear model representing the relationship of log-PCB with log-length and log-lipid, )(tMO  is 

the mixed-order model, and ),1( σLN  is a lognormal error distribution.  We fit this model using a two-

stage process.  In order to account for the effect of lipid and length, we fit a linear model with log-PCB, 

log-lipid and log-length treating year as a categorical variable.  The factors and interactions included in the 

model were chosen separately for each species in order to simplify the model fitting procedure and the 

comparison of results within species across sites.  Years with fewer than four data points were insufficient 

for modeling the interaction terms and so were collapsed into the nearest year (if this occurred, it was in the 

first year of sample data for a given site and species).  Using the residuals from the linear model, we 

calculated the adjusted concentrations as:  

)exp(
^

β⋅+= repAdjusted XRESIDPCB . 

 

repX  is a vector of the measurements for a representative fish, which we chose to be the overall average 

lipid and length within each species.  We fit the MO temporal trend model to the adjusted data.   

 



Due to differences between the two species and two locations, we modeled each species-location 

combination separately.  We fit the model to the data using the maximum likelihood estimators for the 

parameters.  

 

The choice of tP can be made to coincide with some initial time t0 (as in Stow et al., 1999), but the choice is 

arbitrary as long as it is within a certain (possibly infinite) interval.  This interval is dependent on the 

parameters. The details of this relationship are provided in the appendix.   We chose tP to be 1990 because 

it seemed to result in better convergence for the optimization routines (see appendix).   We constrained the 

parameters such that the model had positive concavity and was real-valued between 1975 and 2030.  A 

more detailed account of these choices is provided in the appendix.  As noted in Stow, et al (1999), as θ 

approaches 1, the mixed-order model approaches first order decay.  We assumed the errors were 

lognormally distributed.  Rather than transforming the data and working in log-scale with normal error, we 

modeled the mean directly using lognormal error.  The second derivative matrix of the likelihood function 

was ill-conditioned so we used a derivative free algorithm called the downhill simplex method developed 

by Nelder and Mead (1965) to maximize the likelihood function in Matlab©.  We checked our assumption 

of lognormal error by performing a test for normality given by Looney and Gulledge (1985) on the log of 

the standardized residuals.   

 

Profile likelihood approaches have been developed as a way to make inferences about a particular 

parameter of interest when there are a number of other parameters that are necessary for the model, but 

uninteresting apart from that (i.e. nuisance parameters).  We were interested in predicting mean PCB 

concentration in fish at 2010. To estimate approximate confidence intervals for the future mean 

concentration, the other parameters were treated as nuisance parameters.  The likelihood was calculated for 

fixed values of the mean parameter by maximizing over the other parameters. In order to accomplish this, 

we re-parameterized the model with µ2010 (C2010) as a parameter rather than C1990 (consider that C1990=µ1990).  

Using the asymptotic ÷2 distribution of the generalized likelihood ratio test (Bain and Engelhardt, 1992), we 

generated profile-likelihood based confidence intervals for the mean in 2010. 

 

Simulations 

 

Using Lake Allegan carp and Plainwell Impoundment carp as the base datasets, we performed three pairs of 

simulations to evaluate three different aspects of our procedure.  These were the coverage of the likelihood 

methods (lognormal error), robustness to faulty error assumptions (empirical distribution), and the failure to 

account for variability from the initial linear model (full procedure empirical). In each simulation we 

needed a ‘true’ model to use as the basis for the simulation.  We chose to use the fitted models for the base 

datasets as the true model of the mean.  These simulations differed only in how the data for the non-linear 

regression was generated.    



 

 

The data for the lognormal error simulations was model based.   Each dataset was generated having the 

same within year sample sizes as the base dataset.  The generated data was lognormal with the mean in a 

given year equal to the model and shape parameter equal to the fitted value of the shape parameter for the 

base dataset.   In the empirical distribution simulations, we used a re-sampling approach and sampled with 

replacement by year from the length and lipid adjusted values of the base dataset.  Yearly sample sizes in 

the generated data were kept consistent with those found in the base dataset.  The data for the full 

procedure empirical simulations was also re-sampled, except this time it was from the unadjusted values of 

the base dataset.   We sampled with replacement by year from the unadjusted values of the base dataset and 

then adjusted these data for length and lipid with two-way interactions as described above.  Yearly sample 

sizes in the generated data were kept consistent with those found in the base dataset.   

 

Once the data had been generated, we followed the profile likelihood procedure described above to 

generate a confidence interval for the predicted mean PCB concentration in 2010.  If the optimization 

routines did not converge for a given dataset, it was noted.  After generating 1000 samples and their 

corresponding confidence intervals, we tabulated the percentage of generated confidence intervals that 

contained the true value.  We used this Monte Carlo estimate of our coverage probability to evaluate how 

well our procedure performed under the assumptions of the simulation.   

 

Results 

At both sites for carp, we found there was at least one significant two-way interaction, so we used a linear 

model with two-way interactions to adjust the data.  Two-way interactions were not significant for the bass 

at either site, nor was length.  Bass at each site were adjusted using a linear model which included only 

time and lipid as factors.  The model fitting results (including p-values) are summarized in Table 1. 

 

Trend analyses were done on adjusted PCB concentrations for each site-species combination, with 

estimated parameters, predictions, and confidence limits on the predictions given in Table 2.  Plots of the 

data along with the fitted model and prediction intervals are given in Figure 1.   

 

We tested log standardized residuals for normality and found that for both species at Lake Allegan and carp 

at Plainwell Impoundment, the data were significantly different than normal (p<0.005).  The distribution of 

transformed residuals for smallmouth bass at Plainwell Impoundment was similar to a  normal distribution 

(p>0.1).  Probability plots are given in Figure 2. 

 

The simulations to evaluate whether the asymptotic coverage probability using the generalized likelihood 

ratio resulted in coverage probabilities of 96% and 99% for Lake Allegan and Plainwell Impoundment carp 



datasets respectively.  Coverage probabilities generated with the empirical distribution simulations were 

99.8% and 99.7% for Lake Allegan and Plainwell Impoundment carp, respectively.  The full procedure 

empirical simulations had coverage of 73.9% for Lake Allegan carp and 77.8% for Plainwell Impoundment 

carp.  The simulation results are summarized in Table 3.   

 

 

Discussion 

Adjustments to fish concentration based on lipid and/or length are necessary to accurately interpret 

temporal trends in PCB concentration in fish tissue.  We initially hoped that modeling on the log-log scale 

would untangle the time-lipid and time-length interactions.  However, this was not generally the case 

(Table 1).  Although each site-species combination varied in the terms that were found to be significant, we 

felt justified in using the same linear model for each species, regardless of the site.  We were not interested 

in interpreting this linear model and so the significance of any given term was not as important to us as 

trying to make sure that the adjusted data would be as free as possible from the effects of lipid and length in 

order to isolate the temporal trend.  The adjusted data are our best attempt to show what PCB 

concentrations would have been if all the fish within a species were identical in length and/or lipid content.   

 

It is important to understand that our predicted PCB concentrations for 2010 are scaled to a historically 

representative fish.  The actual PCB concentrations that are found in future fish will almost certainly 

continue to vary with lipid content and length.  Although it may be reasonable to say that we are 95% 

confident that mean PCB concentrations will be within certain limits for fish similar to our representative 

fish, if the fish are exceptionally different from this representative, we cannot conclude that measured PCB 

concentrations should be within these limits.  It is also important to note that we made predictions only 

about the mean of the distribution of PCB concentrations for a fish with representative length and lipid 

content in 2010.  The profile likelihood based confidence intervals we generated are not for an individual 

fish.  Individual fish could be expected to have greater variability, though we cannot say how much more 

based only on our results. 

 

As noted in the introduction, the mixed-order model asymptotically goes to first order decay as è goes to 1.  

For all of the site-species combinations we analyzed, first order decay may be a reasonable model over the 

study period.   It should be noted that in the case of Lake Allegan carp, this approximately first-order model 

is strongly driven by the exceptionally large sample from 1986 with relatively high levels of PCB.  Nearly 

half of the total data for that site-species combination comes from that year alone.  When one looks at post 

1990 data only, there appears to be little or no trend (Figure 3 ).  We suspect that if PCB concentrations start 

to level off, it will take some time before there are enough years of data to start forcing the fitted mixed 

order model to differ from first order decay.   

 



Although commonly assumed in the analysis of this type of data, lognormal error does not appear to be a 

statistically justifiable assumption for two of the four site-species combinations we analyzed.   The carp 

data at both sites were significantly different from lognormal.  The normal probability plot (Figure 2) for 

Plainwell Impoundment carp data indicates that this significance is probably due primarily to one or two 

outliers.  The normal probability plot for Lake Allegan Carp indicates the deviation from lognormality is 

not due to the presence of one or two outlying data points.  Given the necessity of an error distribution for 

likelihood based methods and the lack of commonly used alternative error distributions, we continued with 

the assumption of lognormal error despite the deviations we found.  Recognizing the questionable nature of 

this assumption, we performed the simulation studies to check the robustness of our likelihood-based 

method and found that, with these data, the method was robust to deviations from lognormal error.   

 

A problem with the two-step procedure using adjusted data is that residuals from the linear model may be 

dependent.  It may also be possible to use likelihood methods to incorporate the dependencies (since they 

are a function of the design matrix and do not depend on the data values) explicitly.  However, the 

increased amount of computation and coding that would be required to implement this method are probably 

not justified because the residuals are expected to be nearly independent for sample size much larger than 

the number of parameters (Graybill, 1976).  

 

There is a second problem with the two-step procedure as we have implemented it; our results do not take 

into account the variability of parameter estimates in fitting the linear model.  The coverage estimates from 

the third set of simulations indicating actual coverage may be closer to 75% than 95%.  This indicates that 

our intervals are likely to be extremely conservative.  This problem needs to be addressed before making 

any firm claims about what PCB concentrations are likely to be seen in the future.  One possible alternative 

would be to use an a priori adjustment such as a lipid ratio.  However, it is not clear that this would 

accurately account for the effect of lipid and/or length, in general.   Another approach, which we will 

investigate in future research, is to use a reparameterization of the mixed-order model (Ratkowsky, 1990).  

It is hoped that this reparameterization of the mixed-order model will have better convergence properties 

that would allow a bootstrap approach using Newton-Raphson algorithms to fit the model. 
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Appendix 1: Analytical and Numerical Issues in Fitting the Mixed-Order Model 
 
In Stow et.al.(1999), the mixed-order model was given as a generalization of first-order exponential decay 
(growth).  Our initial assumption was that the mixed-order model had qualitative behavior similar to that of 
exponential decay.  It seemed reasonable to think that for different parameter regimes the behavior of the 
model would be such that it was decreasing (increasing) for all time.  Instead, we found that the model has 
a variety of behaviors that can give nonsensical predictions.   
  
Looking at the model given by Stow et al., we have: 
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where t0 and C0 are taken to be some initial time and concentration respectively. 
 
For fixed è, k, t0, and C0,  
 

( ) ( )]1[ 0
1

0 θθ −⋅−⋅−− ttkC  

 
must be non-negative for a given t in order for a modeled value at that time to be real (except for special 
cases of è).  If è�1 and k�0, this cannot be true for all time.  To see this, note that in order for it to be true, 
it must be the case that  
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With fixed è, k, t0, and C0, as t��, the right hand side of (1) is unbounded in either the positive or negative 
direction depending on the sign of kÌ(1-è).  As t�-�, the right hand side of (1) is unbounded in the 

opposite direction, so it follows that (1) holds on only one of the two intervals ( )ct,∞− and ( )∞,ct , with  
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C(tc) = 0 if è<1 and is unbounded if è>1.   
 
In order to fit the model and use it for prediction, it was necessary to constrain the parameters in such a way 
that predictions have real values.  The simplest constraint is to make kÌ(1-è)�0.  This constraint guarantees 
the model is real valued for all time greater than tc.  Constraining the model so that it is real valued for all 
time greater than tc is more than necessary. We generally found a significantly better model (as measured 
by the maximum likelihood) when we only constrained the model to be real valued on a specified finite 
interval (that is, tc was forced to be outside the finite interval of interest, but the type of interval was not 
forced as with the previous constraint).  A consequence of this relaxation is that it is not generally possible 
to make predictions for all time.  However, given the ad hoc nature of this model and the time scale on 
which we would expect it to be accurate, we think this limitation is acceptable.  The key to generating these 
constraints is the fact that the right hand side of (1) is monotone with respect to t.  This monotonicity 
implies that constraining the endpoints to satisfy (1) will guarantee that the entire interval satisfies (1).   
 
There were numerical issues that complicated the process of fitting the model to the data.  A Newton-
Raphson based approach to maximize the likelihood function was not reliable because the second 
derivative matrix was ill-conditioned with our data.  Instead, we used a much slower derivative free 
algorithm called the downhill simplex method developed by Nelder and Mead (1965).  Even this algorithm 
failed to converge to the optimal solution when maximizing simultaneously over all the parameters (though 



it was usually not far off).  This fact was discovered when the profiling approach we used in prediction 
converged to better fitting models. 
 
In order to find a profile-likelihood based confidence interval for the mean in a given year tP, we re-
parameterized the model to include CP as a parameter rather than C0.  It is possible to show that  
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as long as tP is in the interval where the model is real valued.  Although we chose t0 to be 1975, we found 
that in practice, we had better convergence when we used the second form of the equation with tP taken to 
be 1990.  We speculate that this could be because 1975 was relatively close to tc and the unbounded 
behavior of the model as it approaches tc could effect the convergence of the optimization routines.   
 
 
 



Source DF Type III SS MSE  F Value Pr > F DF Type III SS MSE F Value Pr > F
log(lipid) 1 0.203 0.203 0.76 0.3862 1 0.207 0.207 0.96 0.3310

log(length) 1 0.745 0.745 2.77 0.0983 1 1.245 1.245 5.76 0.0188
yr 8 7.854 0.982 3.65 0.0007 6 1.116 0.186 0.86 0.5281

log(length)*yr 8 7.061 0.883 3.28 0.0018 6 1.056 0.176 0.81 0.5620
log(length)*log(lipid) 1 0.236 0.236 0.88 0.3511 1 0.130 0.130 0.60 0.4397

log(lipid)*yr 8 2.629 0.329 1.22 0.2905 6 1.119 0.186 0.86 0.5263
log(lipid)*log(length)*yr 8 2.692 0.337 1.25 0.274 6 1.072 0.179 0.83 0.5532

log(lipid) 1 4.788 4.788 17.56 <.0001 1 0.055 0.055 0.26 0.6135
log(length) 1 1.773 1.773 6.50 0.0117 1 0.854 0.854 4.00 0.0487

yr 9 7.879 0.875 3.21 0.0014 6 2.932 0.489 2.29 0.0429
log(length)*yr 9 7.251 0.806 2.96 0.0029 6 2.879 0.480 2.25 0.0465

log(lipid)*log(length) 1 4.221 4.221 15.49 0.0001 1 0.020 0.020 0.09 0.7593
log(lipid)*yr 9 5.203 0.578 2.12 0.0308 6 2.239 0.373 1.75 0.1200

Source DF Type III SS MSE F value Pr>F DF Type III SS MSE F Value Pr > F
log(lipid) 1 0.020 0.020 0.1 0.7576 1 0.001 0.001 0.01 0.9425

log(length) 1 0.012 0.012 0.06 0.8081 1 0.011 0.011 0.05 0.8311
yr 3 0.257 0.086 0.41 0.7453 2 0.036 0.018 0.07 0.9288

log(length)*yr 3 0.302 0.101 0.49 0.6946 2 0.029 0.014 0.06 0.9423
log(length)*log(lipid) 1 0.031 0.031 0.15 0.7004 1 0.000 0.000 0.00 0.9955

log(lipid)*yr 3 0.120 0.040 0.19 0.9008 2 0.172 0.086 0.36 0.7013
log(lipid)*log(length)*yr 3 0.124 0.041 0.2 0.8969 2 0.171 0.086 0.36 0.7031

log(lipid) 1 0.418 0.418 2.14 0.1515 1 0.062 0.062 0.27 0.6064
log(length) 1 0.019 0.019 0.10 0.7555 1 0.640 0.640 2.77 0.1052

yr 4 0.552 0.138 0.71 0.5920 2 1.052 0.526 2.28 0.1179
log(length)*yr 4 0.590 0.147 0.75 0.5607 2 1.110 0.555 2.40 0.1056

log(lipid)*log(length) 1 0.473 0.473 2.42 0.1273 1 0.091 0.091 0.39 0.5355
log(lipid)*yr 4 0.755 0.189 0.97 0.4366 2 0.158 0.079 0.34 0.7124

log(lipid) 1 1.159 1.159 5.58 0.0221 1 4.187 4.187 17.06 0.0002
log(length) 1 0.031 0.031 0.15 0.7029 1 0.058 0.058 0.24 0.6283

yr 4 21.076 5.269 25.37 <.0001 3 2.023 0.674 2.75 0.0557

Full Model

No Three-way 
Interaction

No Interactions

Full Model

TABLE 1: FITTING THE LINEAR MODEL

PLAINWELL IMPOUNDMENT

LAKE ALLEGAN

LAKE ALLEGAN

CARP

SMALLMOUTH BASS

No Three-way 
Interaction

PLAINWELL IMPOUNDMENT



LAKE ALLEGAN
PLAINWELL 

IMPOUNDMENT
LAKE ALLEGAN

PLAINWELL 
IMPOUNDMENT

Length (cm) 34.8115 34.8115 50.5159 50.5159
Lipid (g/kg) 0.9753 0.9753 3.4218 3.4218

C 1990 2.3739 2.1187 6.1205 4.3600
θ 0.8096 0.9222 1.3120 1.1799
k 0.1548 0.0827 0.0960 0.0538
σ 0.5200 0.4626 0.7304 0.4288
lcl 0.0353 0.1312 0.2397 0.5362

µ 2010 0.0623 0.4017 0.6088 1.2493
ucl 0.2077 0.9353 0.9658 1.9887

Base Dataset Failed Covered Missed %Coverage
Lake Allegan 4 958 38 96.2

Plainwell Impoundment 5 988 7 99.3
Lake Allegan 4 994 2 99.8

Plainwell Impoundment 7 990 3 99.7
Lake Allegan 13 729 258 73.9

Plainwell Impoundment 3 776 221 77.8

TABLE 2: FITTED TIME TREND AND PREDICTED MEAN FOR 2010

SMALLMOUTH BASS CARP

Adjustment 
Values

Model 
Parameter 
Estimates

Predictions

Adjustment values refer to the length and lipid values used to adjust the residuals from the initial linear models and put all fish 
from each species on the same scale.  The model parameter estimates are the maximum likelihood estimates for the 
parameters of the mixed order model and the lognormal shape parameter σ .  Lcl and ucl are the lower and upper 95% profile 
likelihood based confidence limits for the maximum likelihood estimate of µ 2010, the mean PCB concentrations in 2010. 

TABLE 3: SIMULATION RESULTS

1000 datasets were generated for each simulation.  For each generated datatset, it was noted whether the procedures failed to converge (Failed), the 
generated confidence interval contained the true value (Covered), or did not contain the true mean (Missed).  A Monte Carlo estimate for the coverage of 
confidence interval (%Coverage) is given by Covered/[Missed+Covered].

Simulation Type

Lognormal Error

Empirical Distribution

Full Procedure Empirical 
Distribution
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Figure 1: Fitted Model and Confidence Limits for Predicted 2010 Mean
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Figure 2: Normal Probability Plots
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Figure 3: Lake Allegan Carp Post 1990 Data
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